Skip to main content
Log in

Neural circuits for a top-down control of fear and extinction

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Fear learning and extinction are controlled by the activity of three interconnected regions: the amygdala, hippocampus, and prefrontal cortex. Of these, the medial prefrontal cortex modulates specific aspects in fear and extinction via a top-down regulation. In recent years, extensive progress has been made in our understanding of the neural circuits that mediate fear-related behaviors and their modulation by ascending systems. The development of new experimental techniques is now revealing the details of the intrinsic circuits within these structures as well as the connections between them. Here, we highlight recent advances in our understanding of how the prefrontal cortex may mediate such a top-down regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An B, Kim J, Park K, Lee S, Song S, Choi S (2017) Amount of fear extinction changes its underlying mechanisms. eLife 6:e25224

    PubMed  Google Scholar 

  • Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Hablitz JJ (2007) Dopaminergic modulation of local network activity in rat prefrontal cortex. J Neurophysiol 97:4120–4128

    CAS  PubMed  Google Scholar 

  • Bloem B, Schoppink L, Rotaru DC, Faiz A, Hendriks P, Mansvelder HD, de Berg W, Wouterlood FG (2014) Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J Neurosci 34:16234–16246

    PubMed  Google Scholar 

  • Bloodgood DW, Sugam JA, Holmes A, Kash TL (2018) Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 8:60

    PubMed  Google Scholar 

  • Burns SM, Wyss MJ (1985) The involvement of the anterior cingulate cortex in blood pressure control. Brain Res 340(1):71–77

  • Burgos Robles A, Vidalgonzalez I, Santini E, Quirk G (2007) Consolidation of fear extinction requires nmda receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880

    CAS  PubMed  Google Scholar 

  • Burgos-Robles A, Kimchi EY, Izadmehr EM, Porzenheim MJ, Ramos-Guasp WA, Nieh EH, Felix-Ortiz AC, Namburi P, Leppla CA, Presbrey KN, Anandalingam KK, Pagan-Rivera PA, Anahtar M, Beyeler A, Tye KM (2017) Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat Neurosci 20:824–835

    CAS  PubMed  Google Scholar 

  • Carlén M (2017) What constitutes the prefrontal cortex? Science 358:478–482

    PubMed  Google Scholar 

  • Chandler D, Waterhouse BD (2012) Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front Behav Neurosci 6:9

    Google Scholar 

  • Chandler DJ, Lamperski CS, Waterhouse BD (2013) Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res 1522:38–58

    CAS  PubMed  Google Scholar 

  • Chen G (2004) Potentiation of nmda receptor currents by dopamine d1 receptors in prefrontal cortex. Proc Natl Acad Sci 101:2596–2600

    CAS  PubMed  Google Scholar 

  • Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27:840–844

    CAS  PubMed  Google Scholar 

  • Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TCM, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424

    CAS  PubMed  Google Scholar 

  • Delgado MR, Nearing KI, Ledoux JE, Phelps EA (2008) Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59:829–838

    CAS  PubMed  Google Scholar 

  • Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neuosci 35:3607–3615

    CAS  Google Scholar 

  • Eippert F, Gamer M, Büchel C (2012) Neurobiological mechanisms underlying the blocking effect in aversive learning. J Neuosci 32:13164–13176

    CAS  Google Scholar 

  • Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93

    PubMed  Google Scholar 

  • Fanselow MS, Poulos AM (2005) The neuroscience of mammalian associative learning. Annu Rev Psychol 56:207–234

    PubMed  Google Scholar 

  • Finlay JM, Zigmond MJ, Abercrombie ED (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64:619–628

    CAS  PubMed  Google Scholar 

  • Floresco SB, Tse MT (2007) Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci 27:2045–2057

    CAS  PubMed  Google Scholar 

  • Gabbott PLA, Warner TA, Jays PRL, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71

    CAS  PubMed  Google Scholar 

  • Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16:129–135

    PubMed  Google Scholar 

  • Goosens KA, Maren S (2004) Nmda receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. Eur J Neurosci 20:537–548

    PubMed  Google Scholar 

  • Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of d1 dopaminergic receptor agents into rat prefrontal cortex. J Neuosci 20:1208–1215

    CAS  Google Scholar 

  • Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M (2016) Cortical cholinergic signaling controls the detection of cues. Proc Natl Acad Sci U S A 113:E1089–E1097

    CAS  PubMed  Google Scholar 

  • Guillem K, Bloem B, Poorthuis RB, Loos M, Smit AB, Maskos U, Spijker S, Mansvelder HD (2011) Nicotinic acetylcholine receptor beta 2 subunits in the medial prefrontal cortex control attention. Science 333:888–891

    CAS  PubMed  Google Scholar 

  • Hasselmo ME, Giocomo LM (2006) Cholinergic modulation of cortical function. J Mol Neurosci 30:133–135

    CAS  PubMed  Google Scholar 

  • Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579

    PubMed  Google Scholar 

  • Hobin JA, Ji J, Maren S (2006) Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 16:174–182

    CAS  PubMed  Google Scholar 

  • Hoover W, Vertes R (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179

    PubMed  Google Scholar 

  • Howe WM, Ji JZ, Parikh V, Williams S, Mocaer E, Trocme-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha 4 beta 2*nachrs: underlying cholinergic mechanisms. Neuropsychopharmacology 35:1391–1401

    CAS  PubMed  Google Scholar 

  • Inoue T, Tsuchiya K, Koyama T (1994) Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 49:911–920

    CAS  PubMed  Google Scholar 

  • Ji XH, Cao XH, Zhang CL, Feng ZJ, Zhang XH, Ma L, Li BM (2007) Pre- and postsynaptic -adrenergic activation enhances excitatory synaptic transmission in layer v/vi pyramidal neurons of the medial prefrontal cortex of rats. Cereb Cortex 18:1506–1520

    PubMed  Google Scholar 

  • LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fmri study. Neuron 20:937–945

    CAS  PubMed  Google Scholar 

  • LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    CAS  Google Scholar 

  • Lee YK, Choi J-S (2012) Inactivation of the medial prefrontal cortex interferes with the expression but not the acquisition of differential fear conditioning in rats. Exp Neurobiol 21:23–29

    PubMed  Google Scholar 

  • Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D (2008) Amygdala intercalated neurons are required for expression of fear extinction. Nature 454:642–645

    CAS  PubMed  Google Scholar 

  • Little JP, Carter AG (2013) Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J Neuosci 33:15333–15342

    CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1993) Nmda-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    CAS  PubMed  Google Scholar 

  • Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591:2381–2391

    CAS  PubMed  Google Scholar 

  • Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P (2018a) Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 21:384–392 https://doi.org/10.1038/s41593-018-0073-9

    CAS  PubMed  Google Scholar 

  • Marek R, Xu L, Sullivan Robert KP, Sah P (2018b) Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 21:654–658

  • Maren S (2001) Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    CAS  PubMed  Google Scholar 

  • Mark GP, Rada PV, Shors TJ (1996) Inescapable stress enhances extracellular acetylcholine in the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala. Neuroscience 74:767–774

    CAS  PubMed  Google Scholar 

  • Marowsky A, Yanagawa Y, Obata K, Vogt KE (2005) A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 48:1025–1037

    CAS  PubMed  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    CAS  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    CAS  PubMed  Google Scholar 

  • Miller KD, Pinto DJ, Simons DJ (2001) Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Curr Opin Neurobiol 11:488–497

    CAS  PubMed  Google Scholar 

  • Miserendino MJD, Sananes CB, Melia KR, Davis M (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by nmda antagonists in the amygdala. Nature 345:716–718

    CAS  PubMed  Google Scholar 

  • Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815

    CAS  PubMed  Google Scholar 

  • Mueller D, Porter JT, Quirk GJ (2008) Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci 28:369–375

    CAS  PubMed  Google Scholar 

  • Orsini CA, Kim JH, Knapska E, Maren S (2011) Hippocampal and prefrontal projections to the basal amygdala mediate contextual regulation of fear after extinction. J Neuosci 31:17269–17277

    CAS  Google Scholar 

  • Pape H-C, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463

    CAS  PubMed  Google Scholar 

  • Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    PubMed  Google Scholar 

  • Parent MA, Wang L, Su J, Netoff T, Yuan L-L (2009) Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 20:393–403

    PubMed  Google Scholar 

  • Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    CAS  PubMed  Google Scholar 

  • Pennartz CMA (1995) The ascending neuromodulatory systems in learning by reinforcement: comparing computational conjectures with experimental findings. Brain Res Rev 21:219–245

    CAS  PubMed  Google Scholar 

  • Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129

    CAS  PubMed  Google Scholar 

  • Pinard CR, Mascagni F, McDonald AJ (2012) Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience 205:112–124

    CAS  PubMed  Google Scholar 

  • Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391

    CAS  PubMed  Google Scholar 

  • Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CPJ, Mansvelder HD (2013) Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb Cortex 23:148–161

    PubMed  Google Scholar 

  • Quirk GJ, Mueller D (2007) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    PubMed  Google Scholar 

  • Radley JJ, Williams B, Sawchenko PE (2008) Noradrenergic innervation of the dorsal medial prefrontal cortex modulates hypothalamo-pituitary-adrenal responses to acute emotional stress. J Neurosci 28:5806–5816

    CAS  PubMed  Google Scholar 

  • Royer S, Martina M, Pare D (2000) Polarized synaptic interactions between intercalated neurons of the amygdala. J Neurophysiol 83:3509–3518

    CAS  PubMed  Google Scholar 

  • Sah P, Faber ESL, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    CAS  PubMed  Google Scholar 

  • Santini E, Sepulveda-Orengo M, Porter JT (2012) Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction. Neuropsychopharmacology 37:2047–2056

    CAS  PubMed  Google Scholar 

  • Seamans JK (2000) Dopamine d1/d5 receptor modulation of excitatory synaptic inputs to layer v prefrontal cortex neurons. Proc Natl Acad Sci 98:301–306

    Google Scholar 

  • Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ (2001) Dopamine d1/d5 receptor modulation of excitatory synaptic inputs to layer v prefrontal cortex neurons. Proc Natl Acad Sci 98:301–306

    CAS  PubMed  Google Scholar 

  • Senn V, Wolff Steffen BE, Herry C, Grenier F, Ehrlich I, Gründemann J, Fadok Jonathan P, Müller C, Letzkus Johannes J, Lüthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437

    CAS  PubMed  Google Scholar 

  • Sierra-Mercado D Jr, Corcoran KA, Lebron-Milad K, Quirk GJ (2006) Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction. Eur J Neurosci 24:1751–1758

    PubMed  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538

    PubMed  Google Scholar 

  • Strobel C, Marek R, Gooch Helen M, Sullivan Robert KP, Sah P (2015) Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Rep 10:1435–1442

    CAS  Google Scholar 

  • Sun X (2005) Dopamine receptor stimulation modulates ampa receptor synaptic insertion in prefrontal cortex neurons. J Neurosci 25:7342–7351

    CAS  PubMed  Google Scholar 

  • Tang J, Ko S, Ding HK, Qiu CS, Calejesan AA, Zhuo M (2005) Pavlovian fear memory induced by activation in the anterior cingulate cortex. Mol Pain 1:1744–8069

  • van Aerde KI, Heistek TS, Mansvelder HD (2008) Prelimbic and infralimbic prefrontal cortex interact during fast network oscillations. PLoS One 3:e2725

    PubMed  Google Scholar 

  • Van De Werd HJ, Rajkowska G, Evers P, Uylings HB (2010) Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct 214:339–353

    CAS  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    CAS  PubMed  Google Scholar 

  • Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733

    PubMed  Google Scholar 

  • Yau JO-Y, McNally GP (2015) Pharmacogenetic excitation of dorsomedial prefrontal cortex restores fear prediction error. J Neuosci 35:74–83

    Google Scholar 

  • Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    CAS  PubMed  Google Scholar 

  • Zhong P, Liu W, Gu Z, Yan Z (2008) Serotonin facilitates long-term depression induction in prefrontal cortex via p38 mapk/rab5-mediated enhancement of ampa receptor internalization. J Physiol 586:4465–4479

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Australian Research Council (CE140100007) and National Health and Medical Research Council to P.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sah.

Additional information

This article belongs to a Special Issue on Psychopharmacology of Extinction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marek, R., Sun, Y. & Sah, P. Neural circuits for a top-down control of fear and extinction. Psychopharmacology 236, 313–320 (2019). https://doi.org/10.1007/s00213-018-5033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5033-2

Keywords

Navigation