Skip to main content

Neural Circuits Mediating Fear Learning and Extinction

  • Chapter
  • First Online:
Systems Neuroscience

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 21))

Abstract

The activity of neural circuits that underpin particular behaviours are one of the most interesting questions in neurobiology today. This understanding will not only lead to a detailed understanding of learning and memory formation, but also provides a platform for the development of novel therapeutic approaches to a range of neurological disorders that afflict humans. Among the different behavioural paradigms, Pavlovian fear conditioning and its extinction are two of the most extensively used to study acquisition, consolidation and retrieval of fear-related memories. The amygdala, medial prefrontal cortex (mPFC) and hippocampus are three regions with extensive bidirectional connections, and play key roles in fear processing. In this chapter, we summarise our current understanding of the structure and physiological role of these three regions in fear learning and extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acoli, GA et. al., Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neuroscience. 2008; 9:557-568.

    Google Scholar 

  • Amano T, Unal CT, Pare D. Synaptic correlates of fear extinction in the amygdala. Nat Neurosci. 2010;13:489–94.

    Article  CAS  Google Scholar 

  • Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ. Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron. 2007;53:871–80.

    Article  CAS  Google Scholar 

  • Cassell MD, Gray TS, Kiss JZ. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J Comp Neurol. 1986;246:478–99.

    Article  CAS  Google Scholar 

  • Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature. 2010;468:277–82.

    Article  CAS  Google Scholar 

  • Conde F, Maire-Lepoivre E, Audinat E, Crepel F. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol. 1995;352:567–93.

    Article  CAS  Google Scholar 

  • Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 1990;13:99–103.

    Article  CAS  Google Scholar 

  • Corcoran KA, Quirk GJ. Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci. 2007;27:840–4.

    Article  CAS  Google Scholar 

  • de Olmos J, Hardy H, Heimer L. Amygdala. In: Paxinos G, editor. The rat nervous system. Sydney: Academic; 1985. p. 317–223.

    Google Scholar 

  • Delaney AJ, Sah P. Pathway-specific targeting of GABA(A) receptor subtypes to somatic and dendritic synapses in the central amygdala. J Neurophysiol. 2001;86:717–23.

    Article  CAS  Google Scholar 

  • Do-Monte FH, Manzano-Nieves G, Quinones-Laracuente K, Ramos-Medina L, Quirk GJ. Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci. 2015;35:3607–15.

    Article  CAS  Google Scholar 

  • Dumont EC, Martina M, Samson RD, Drolet G, Paré D. Physiological properties of central amygdala neurons: species differences. Eur J Neurosci. 2002;15:544–52.

    Article  Google Scholar 

  • Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Luthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron. 2009;62:757–71.

    Article  CAS  Google Scholar 

  • Faber ESL, Callister RJ, Sah P. Morphological and electrophysiological properties of principal neurons in the rat lateral amygdala in vitro. J Neurophysiol. 2001;85:714–23.

    Article  CAS  Google Scholar 

  • Falls WA, Miserendino MJ, Davis M. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci. 1992;12:854–63.

    Article  CAS  Google Scholar 

  • Farb CR, Ledoux JE. Afferents from rat temporal cortex synapse on lateral amygdala neurons that express NMDA and AMPA receptors. Synapse. 1999;33:218–29.

    Article  CAS  Google Scholar 

  • Freedman LJ, Insel TR, Smith Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol. 2000;421:172–88.

    Article  CAS  Google Scholar 

  • Freund TF, Buzsaki G. Interneurons of the hippocampus. Hippocampus. 1996;6:347–470.

    Article  CAS  Google Scholar 

  • Goosens KA, Maren S. NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala. Eur J Neurosci. 2004;20:537–48.

    Article  Google Scholar 

  • Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature. 2010;468:270–6.

    Article  CAS  Google Scholar 

  • Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev. 2003;27:555–79.

    Article  Google Scholar 

  • Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A. Switching on and off fear by distinct neuronal circuits. Nature. 2008;454:600–6.

    Article  CAS  Google Scholar 

  • Hobin JA, Ji J, Maren S. Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus. 2006;16:174–82.

    Article  CAS  Google Scholar 

  • Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct. 2007;212:149–79.

    Article  Google Scholar 

  • Izquierdo I, Furini CR, Myskiw JC. Fear Memory. Physiol Rev. 2016;96:695–750.

    Article  Google Scholar 

  • Jasnow AM, Ehrlich DE, Choi DC, Dabrowska J, Bowers ME, McCullough KM, Rainnie DG, Ressler KJ. Thy1-expressing neurons in the basolateral amygdala may mediate fear inhibition. J Neurosci. 2013;33:10396–404.

    Article  CAS  Google Scholar 

  • Ji J, Maren S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus. 2007;17:749–58.

    Article  Google Scholar 

  • Kim M, Campeau S, Falls WA, Davis M. Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behav Neural Biol. 1993;59:5–8.

    Article  CAS  Google Scholar 

  • Lanuza E, Moncho-Bogani J, Ledoux JE. Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience. 2008;155:959–68.

    Article  CAS  Google Scholar 

  • Laurent V, Westbrook RF. Distinct contributions of the basolateral amygdala and the medial prefrontal cortex to learning and relearning extinction of context conditioned fear. Learn Mem. 2008;15:657–66.

    Article  Google Scholar 

  • Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D. Amygdala intercalated neurons are required for expression of fear extinction. Nature. 2008;454:642–5.

    Article  CAS  Google Scholar 

  • Lopez de Armentia M, Sah P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J Neurophysiol. 2004;92:1285–94.

    Article  Google Scholar 

  • Lubin FD, Gupta S, Parrish RR, Grissom NM, Davis RL. Epigenetic mechanisms: critical contributors to long-term memory formation. Neuroscientist. 2011;17:616–32.

    Article  CAS  Google Scholar 

  • Mahanty NK, Sah P. The physiology of excitatory synapses in the lateral and basolateral amygdala. Soc Neurosci. Abstracts 22; 1996.

    Google Scholar 

  • Mamiya N, Goldenring JR, Tsunoda Y, Modlin IM, Yasui K, Usuda N, Ishikawa T, Natsume A, Hidaka H. Inhibition of acid secretion in gastric parietal cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-93. Biochem Biophys Res Commun. 1993;195:608–15.

    Article  CAS  Google Scholar 

  • Marek, R. Strobel, C., Bredy, TW., Pankaj Sah, P. The amygdala and medial prefrontal cortex: partners in the fear circuit. The Journal of Physiology. 2013; 591(10):2381–2391

    Article  CAS  Google Scholar 

  • Maren S, Holt W. The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res. 2000;110:97–108.

    Article  CAS  Google Scholar 

  • Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5:844–52.

    Article  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5:793–807.

    Article  CAS  Google Scholar 

  • Martina M, Royer S, Pare D. Physiological properties of central medial and central lateral amygdala neurons. J Neurophysiol. 1999;82:1843–54.

    Article  CAS  Google Scholar 

  • Mayford M, Siegelbaum SA, Kandel ER. Synapses and memory storage. Cold Spring Harb Perspect Biol. 2012;4(6):a005751.

    Article  Google Scholar 

  • McDonald AJ. Neurons of the lateral and basolateral amygdaloid nuclei: a golgi study in the rat. J Comp Neurol. 1982;212:293–312.

    Article  CAS  Google Scholar 

  • McDonald AJ. Projection neurons of the basolateral amygdala: a correlative Golgi and retrograde tract tracing study. Brain Res Bull. 1992;28:179–85.

    Article  CAS  Google Scholar 

  • McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Brain Res. 1998;55:257–332.

    CAS  Google Scholar 

  • McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience. 2001;105:681–93.

    Article  CAS  Google Scholar 

  • McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res. 2017;95(3):797–820.

    Article  CAS  Google Scholar 

  • McDonald AJ, Mascagni F, Guo L. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience. 1996;71:55–75.

    Article  CAS  Google Scholar 

  • Milad MR, Quirk GJ. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature. 2002;420:70–4.

    Article  CAS  Google Scholar 

  • Millhouse OE. The intercalated cells of the amygdala. J Comp Neurol. 1986;247:246–71.

    Article  CAS  Google Scholar 

  • Miserendino MJD, Sananes CB, Melia KR, Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature. 1990;345:716–8.

    Article  CAS  Google Scholar 

  • Morgan MA, Romanski LM, LeDoux JE. Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett. 1993;163:109–13.

    Article  CAS  Google Scholar 

  • Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev. 2010;90:419–63.

    Article  CAS  Google Scholar 

  • Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry. 1937;38:725–43.

    Article  Google Scholar 

  • Pare D, Duvarci S. Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol. 2012;22:717–23.

    Article  CAS  Google Scholar 

  • Parent MA, Wang L, Su J, Netoff T, Yuan LL. Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex. 2010;20:393–403.

    Article  Google Scholar 

  • Pavlov IP. Conditioned reflexes. New York: Dover; 1927.

    Google Scholar 

  • Pinard CR, Mascagni F, McDonald AJ. Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala. Neuroscience. 2012;205:112–24.

    Article  CAS  Google Scholar 

  • Pinto A, Sesack SR. Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors. Brain Struct Funct. 2008;213:159–75.

    Article  CAS  Google Scholar 

  • Pitkänen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 1997;20:517–23.

    Article  Google Scholar 

  • Price JL, Russchen FT, Amaral DG. The limbic region. II: the amygdaloid complex. In: Bjorklund A, Hökfelt T, Swanson LW, editors. Handbook of chemical neuroanatomy, vol. 5, Integrated systems of the CNS, part I. Amsterdam: Elsevier Science; 1987.

    Google Scholar 

  • Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33:56–72.

    Article  Google Scholar 

  • Rainnie DG, Asprodini EK, Schinnick-Gallagher P. Inhibitory transmission in the basolateral amygdala. J Neurophysiol. 1991;66:999–1009.

    Article  CAS  Google Scholar 

  • Royer S, Paré D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience. 2002;115:455–62.

    Article  CAS  Google Scholar 

  • Royer S, Martina M, Paré D. An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci. 1999;19:10575–83.

    Article  CAS  Google Scholar 

  • Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83:803–34.

    Article  CAS  Google Scholar 

  • Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ. Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci. 2004;24:5704–10.

    Article  CAS  Google Scholar 

  • Sotres-Bayon F, Quirk GJ. Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol. 2010;20:231–5.

    Article  CAS  Google Scholar 

  • Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron. 2012;76:804–12.

    Article  CAS  Google Scholar 

  • Spampanato J, Polepalli J, Sah P. Interneurons in the basolateral amygdala. Neuropharmacology. 2011;60:765–73.

    Article  CAS  Google Scholar 

  • Strobel C, Marek R, Gooch HM, Sullivan RK, Sah P. Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Rep. 2015. https://doi.org/10.1016/j.celrep.2015.02.008. [Epub ahead of print].

    Article  CAS  Google Scholar 

  • Van De Werd HJ, Rajkowska G, Evers P, Uylings HB. Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse. Brain Struct Funct. 2010;214:339–53.

    Article  CAS  Google Scholar 

  • Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science. 2011;333:104–7.

    Article  CAS  Google Scholar 

  • Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci. 2006;9:534–42.

    Article  CAS  Google Scholar 

  • Washburn MS, Moises HC. Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J Neurosci. 1992;12:4066–79.

    Article  CAS  Google Scholar 

  • Weisskopf MG, LeDoux JE. Distinct populations of NMDA receptors at subcortical and cortical inputs to principal cells of the lateral amygdala. J Neurophysiol. 1999;81:930–4.

    Article  CAS  Google Scholar 

  • Windels F, Yan S, Stratton PG, Sullivan R, Crane JW, Sah P. Auditory Tones and Foot-Shock Recapitulate Spontaneous Sub-Threshold Activity in Basolateral Amygdala Principal Neurons and Interneurons. PLoS One. 2016;11:e0155192.

    Article  Google Scholar 

  • Woodruff AR, Sah P. Inhibition and synchronization of basal amygdala principal neuron spiking by parvalbumin-positive interneurons. J Neurophysiol. 2007a;98:2956–61.

    Article  Google Scholar 

  • Woodruff AR, Sah P. Networks of parvalbumin-positive interneurons in the basolateral amygdala. J Neurosci. 2007b;27:553–63.

    Article  CAS  Google Scholar 

  • Woodruff AR, Monyer H, Sah P. GABAergic excitation in the basolateral amygdala. J Neurosci. 2006;26:11881–7.

    Article  CAS  Google Scholar 

  • Yang CR, Seamans JK, Gorelova N. Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. J Neurosci. 1996;16:1904–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work for funded by grants from the National Health and Medical Research Council of Australia and the Centre for Integrative Brain Function from the Australian Research Council (CE140100007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Sah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marek, R., Sah, P. (2018). Neural Circuits Mediating Fear Learning and Extinction. In: Cheung-Hoi Yu, A., Li, L. (eds) Systems Neuroscience. Advances in Neurobiology, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-94593-4_2

Download citation

Publish with us

Policies and ethics