Skip to main content
Log in

The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Current treatments for schizophrenia have modest, if any, efficacy on cognitive dysfunction, creating a need for novel therapies. Their development requires predictive animal models. The N-methyl-d-aspartate (NMDA) hypothesis of schizophrenia indicates the use of NMDA antagonists, like subchronic phencyclidine (scPCP) to model cognitive dysfunction in adult animals.

Objectives

The objective of this study was to assess the scPCP model by (1) reviewing published findings of scPCP-induced neurochemical changes and effects on cognitive tasks in adult rats and (2) comparing findings from a multi-site study to determine scPCP effects on standard and touchscreen cognitive tasks.

Methods

Across four research sites, the effects of scPCP (typically 5 mg/kg twice daily for 7 days, followed by at least 7-day washout) in adult male Lister Hooded rats were studied on novel object recognition (NOR) with 1-h delay, acquisition and reversal learning in Morris water maze and touchscreen-based visual discrimination.

Results

Literature findings showed that scPCP impaired attentional set-shifting (ASST) and NOR in several labs and induced a variety of neurochemical changes across different labs. In the multi-site study, scPCP impaired NOR, but not acquisition or reversal learning in touchscreen or water maze. Yet, this treatment regimen induced locomotor hypersensitivity to acute PCP until 13-week post-cessation.

Conclusions

The multi-site study confirmed that scPCP impaired NOR and ASST only and demonstrated the reproducibility and usefulness of the touchscreen approach. Our recommendation, prior to testing novel therapeutics in the scPCP model, is to be aware that further work is required to understand the neurochemical changes and specificity of the cognitive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Monim Z, Neill JC, Reynolds GP (2007) Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. J Psychopharmacol 21:198–205

    Article  CAS  PubMed  Google Scholar 

  • Abdul-Monim Z, Reynolds GP, Neill JC (2006) The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res 169:263–273

    Article  CAS  PubMed  Google Scholar 

  • Abe S, Suzuki T, Endo K, Hori T, Arai H (2005) Effects of single and repeated phencyclidine administration on [3H]flunitrazepam binding in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 29:133–140

    Article  CAS  PubMed  Google Scholar 

  • Abe S, Suzuki T, Ito T, Baba A, Hori T, Kurita H, Yamaguchi M, Shiraishi H (2000) Differential expression of GABA(A) receptor subunit mRNAs and ligand binding sites in rat brain following phencyclidine administration. Synapse 38:51–60

    Article  CAS  PubMed  Google Scholar 

  • Abe S, Suzuki T, Ito T, Yamaguchi M, Baba A, Hori T, Kurita H, Shiraishi H, Okado N (2001) Effects of single and repeated phencyclidine administration on the expression of metabotropic glutamate receptor subtype mRNAs in rat brain. Neuropsychopharmacology 25:173–184

    Article  CAS  PubMed  Google Scholar 

  • Adams BW, Moghaddam B (2001) Effect of clozapine, haloperidol, or M100907 on phencyclidine-activated glutamate efflux in the prefrontal cortex. Biol Psychiatry 50:750–757

    Article  CAS  PubMed  Google Scholar 

  • Addington J, Barbato M (2012) The role of cognitive functioning in the outcome of those at clinical high risk for developing psychosis. Epidemiol Psychiatr Sci 21:335–342

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Keen S, Warburton EC, Bussey TJ (1997) Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res Bull 43:279–287

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, Potkin SG, Sandman CA, Bunney WE Jr, Jones EG (1996) Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 16:19–30

    CAS  PubMed  Google Scholar 

  • Aleman A, de Haan EH, Kahn RS (2005) Object versus spatial visual mental imagery in patients with schizophrenia. J Psychiatry Neurosci 30:53–56

    PubMed Central  PubMed  Google Scholar 

  • Andersen JD, Pouzet B (2004) Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology 29:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Arnt J, Bang-Andersen B, Grayson B, Bymaster FP, Cohen MP, DeLapp NW, Giethlen B, Kreilgaard M, McKinzie DL, Neill JC, Nelson DL, Nielsen SM, Poulsen MN, Schaus JM, Witten LM (2010) Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats. Int J Neuropsychopharmacol 13:1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Barch DM, Ceaser A (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 16:27–34

    Article  PubMed  Google Scholar 

  • Barense MD, Fox MT, Baxter MG (2002) Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats. Learn Mem 9:191–201

    Article  PubMed Central  PubMed  Google Scholar 

  • Barnes SA, Sawiak SJ, Caprioli D, Jupp B, Buonincontri G, Mar AC, Harte MK, Fletcher PC, Robbins TW, Neill JC, Dalley JW (2014) Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia. Int J Neuropsychopharmacol 18

  • Bartko SJ, Winters BD, Cowell RA, Saksida LM, Bussey TJ (2007) Perceptual functions of perirhinal cortex in rats: zero-delay object recognition and simultaneous oddity discriminations. J Neurosci 27:2548–2559

    Article  CAS  PubMed  Google Scholar 

  • Beninger RJ, Beuk J, Banasikowski TJ, van Adel M, Boivin GA, Reynolds JN (2010) Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA(A) receptor binding. Behav Pharmacol 21:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ’recognition memory’. Nat Protoc 1:1306–1311

    Article  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    CAS  PubMed  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    Article  PubMed  Google Scholar 

  • Breese GR, Knapp DJ, Moy SS (2002) Integrative role for serotonergic and glutamatergic receptor mechanisms in the action of NMDA antagonists: potential relationships to antipsychotic drug actions on NMDA antagonist responsiveness. Neurosci Biobehav Rev 26:441–455

    Article  CAS  PubMed  Google Scholar 

  • Broberg BV, Glenthoj BY, Dias R, Larsen DB, Olsen CK (2009) Reversal of cognitive deficits by an ampakine (CX516) and sertindole in two animal models of schizophrenia–sub-chronic and early postnatal PCP treatment in attentional set-shifting. Psychopharmacol (Berl) 206:631–640

    Article  CAS  Google Scholar 

  • Brooks WJ, Weeks AC, Leboutillier JC, Petit TL (1997) Altered NMDA sensitivity and learning following chronic developmental NMDA antagonism. Physiol Behav 62:955–962

    Article  CAS  PubMed  Google Scholar 

  • Bullock WM, Bolognani F, Botta P, Valenzuela CF, Perrone-Bizzozero NI (2009) Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine. Neurochem Int 55:775–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM, Murray EA (2005) The perceptual-mnemonic/feature conjunction model of perirhinal cortex function. Q J Exp Psychol B 58:269–282

    Article  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  CAS  PubMed  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia–implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13:272–276

    Article  CAS  PubMed  Google Scholar 

  • Chaudieu I, Vignon J, Chicheportiche M, Kamenka JM, Trouiller G, Chicheportiche R (1989) Role of the aromatic group in the inhibition of phencyclidine binding and dopamine uptake by PCP analogs. Pharmacol Biochem Behav 32:699–705

    Article  CAS  PubMed  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    CAS  PubMed  Google Scholar 

  • Clark RE, Zola SM, Squire LR (2000) Impaired recognition memory in rats after damage to the hippocampus. J Neurosci 20:8853–8860

    CAS  PubMed  Google Scholar 

  • Cochran SM, Kennedy M, McKerchar CE, Steward LJ, Pratt JA, Morris BJ (2003) Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology 28:265–275

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove J, Newell TG (1991) Recovery of neuropsychological functions during reduction in use of phencyclidine. J Clin Psychol 47:159–169

    Article  CAS  PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Damgaard T, Larsen DB, Hansen SL, Grayson B, Neill JC, Plath N (2010) Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses sub-chronic PCP-induced deficits in the novel object recognition task in rats. Behav Brain Res 207:144–150

    Article  CAS  PubMed  Google Scholar 

  • Damgaard T, Plath N, Neill JC, Hansen SL (2011) Extrasynaptic GABAA receptor activation reverses recognition memory deficits in an animal model of schizophrenia. Psychopharmacol (Berl) 214:403–413

    Article  CAS  Google Scholar 

  • Dawson N, Thompson RJ, McVie A, Thomson DM, Morris BJ, Pratt JA (2012) Modafinil reverses phencyclidine-induced deficits in cognitive flexibility, cerebral metabolism, and functional brain connectivity. Schizophr Bull 38:457–474

    Article  PubMed Central  PubMed  Google Scholar 

  • Dawson N, Xiao X, McDonald M, Higham DJ, Morris BJ, Pratt JA (2014) Sustained NMDA receptor hypofunction induces compromised neural systems integration and schizophrenia-like alterations in functional brain networks. Cereb Cortex 24:452–464

    Article  PubMed  Google Scholar 

  • de Bruin NM, van Drimmelen M, Kops M, van Elk J, Wetering MM, Schwienbacher I (2013) Effects of risperidone, clozapine and the 5-HT6 antagonist GSK-742457 on PCP-induced deficits in reversal learning in the two-lever operant task in male Sprague Dawley rats. Behav Brain Res 244:15–28

    Article  PubMed  CAS  Google Scholar 

  • Deschenes A, Goulet S, Dore FY (2006) Rule shift under long-term PCP challenge in rats. Behav Brain Res 167:134–140

    Article  CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin card sorting test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  CAS  PubMed  Google Scholar 

  • Didriksen M, Skarsfeldt T, Arnt J (2007) Reversal of PCP-induced learning and memory deficits in the Morris’ water maze by sertindole and other antipsychotics. Psychopharmacol (Berl) 193:225–233

    Article  CAS  Google Scholar 

  • Egerton A, Reid L, McGregor S, Cochran SM, Morris BJ, Pratt JA (2008) Subchronic and chronic PCP treatment produces temporally distinct deficits in attentional set shifting and prepulse inhibition in rats. Psychopharmacol (Berl) 198:37–49

    Article  CAS  Google Scholar 

  • Elliott R, McKenna PJ, Robbins TW, Sahakian BJ (1995) Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychol Med 25:619–630

    Article  CAS  PubMed  Google Scholar 

  • Elsworth JD, Groman SM, Jentsch JD, Valles R, Shahid M, Wong E, Marston H, Roth RH (2012) Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology 62:1442–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elsworth JD, Hajszan T, Leranth C, Roth RH (2011a) Loss of asymmetric spine synapses in dorsolateral prefrontal cortex of cognitively impaired phencyclidine-treated monkeys. Int J Neuropsychopharmacol 14:1411–1415

    Article  PubMed Central  PubMed  Google Scholar 

  • Elsworth JD, Morrow BA, Hajszan T, Leranth C, Roth RH (2011b) Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 36:2054–2061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Neave N, Aggleton JP (1996) Neurotoxic lesions of the perirhinal cortex do not mimic the behavioural effects of fornix transection in the rat. Behav Brain Res 80:9–25

    Article  CAS  PubMed  Google Scholar 

  • Fellini L, Kumar G, Gibbs S, Steckler T, Talpos J (2014) Re-evaluating the PCP challenge as a pre-clinical model of impaired cognitive flexibility in schizophrenia. Eur Neuropsychopharmacol 24:1836–1849

    Article  CAS  PubMed  Google Scholar 

  • Finger EC, Mitchell DG, Jones M, Blair RJ (2008) Dissociable roles of medial orbitofrontal cortex in human operant extinction learning. Neuroimage 43:748–755

    Article  PubMed Central  PubMed  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacol (Berl) 183:190–200

    Article  CAS  Google Scholar 

  • Forwood SE, Winters BD, Bussey TJ (2005) Hippocampal lesions that abolish spatial maze performance spare object recognition memory at delays of up to 48 hours. Hippocampus 15:347–355

    Article  CAS  PubMed  Google Scholar 

  • Friedman JI (2004) Cholinergic targets for cognitive enhancement in schizophrenia: focus on cholinesterase inhibitors and muscarinic agonists. Psychopharmacol (Berl) 174:45–53

    Article  CAS  Google Scholar 

  • Gallhofer B, Jaanson P, Mittoux A, Tanghoj P, Lis S, Krieger S (2007) Course of recovery of cognitive impairment in patients with schizophrenia: a randomised double-blind study comparing sertindole and haloperidol. Pharmacopsychiatry 40:275–286

    Article  CAS  PubMed  Google Scholar 

  • Gao XM, Shirakawa O, Du F, Tamminga CA (1993) Delayed regional metabolic actions of phencyclidine. Eur J Pharmacol 241:7–15

    Article  CAS  PubMed  Google Scholar 

  • Goetghebeur P, Dias R (2009) Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat–a back translational study. Psychopharmacol (Berl) 202:287–293

    Article  CAS  Google Scholar 

  • Goetghebeur PJ, Lerdrup L, Sylvest A, Dias R (2010) Erythropoietin reverses the attentional set-shifting impairment in a rodent schizophrenia disease-like model. Psychopharmacol (Berl) 212:635–642

    Article  CAS  Google Scholar 

  • Goldberg TE, Kelsoe JR, Weinberger DR, Pliskin NH, Kirwin PD, Berman KF (1988) Performance of schizophrenic patients on putative neuropsychological tests of frontal lobe function. Int J Neurosci 42:51–58

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357

    Article  CAS  PubMed  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  CAS  PubMed  Google Scholar 

  • Grace AA (2012) Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology 62:1342–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grayson B, Adamson L, Harte M, Leger M, Marsh S, Piercy C, Neill JC (2014) The involvement of distraction in memory deficits induced by NMDAR antagonism: relevance to cognitive deficits in schizophrenia. Behav Brain Res 266:188–192

    Article  CAS  PubMed  Google Scholar 

  • Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184:31–38

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara H, Fujita Y, Ishima T, Kunitachi S, Shirayama Y, Iyo M, Hashimoto K (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors. Eur Neuropsychopharmacol 18:448–454

    Article  CAS  PubMed  Google Scholar 

  • Hajszan T, Leranth C, Roth RH (2006) Subchronic phencyclidine treatment decreases the number of dendritic spine synapses in the rat prefrontal cortex. Biol Psychiatry 60:639–644

    Article  CAS  PubMed  Google Scholar 

  • Hanlon FM, Weisend MP, Hamilton DA, Jones AP, Thoma RJ, Huang M, Martin K, Yeo RA, Miller GA, Canive JM (2006) Impairment on the hippocampal-dependent virtual Morris water task in schizophrenia. Schizophr Res 87:67–80

    Article  PubMed  Google Scholar 

  • Hashimoto K, Fujita Y, Ishima T, Chaki S, Iyo M (2008a) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and D-serine. Eur Neuropsychopharmacol 18:414–421

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Ishima T, Fujita Y, Matsuo M, Kobashi T, Takahagi M, Tsukada H, Iyo M (2008b) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the novel selective alpha7 nicotinic receptor agonist SSR180711. Biol Psychiatry 63:92–97

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Nishiyama S, Ohba H, Matsuo M, Kobashi T, Takahagi M, Iyo M, Kitashoji T, Tsukada H (2008c) [11C]CHIBA-1001 as a novel PET ligand for alpha7 nicotinic receptors in the brain: a PET study in conscious monkeys. PLoS One 3, e3231

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hori T, Abe S, Baba A, Suzuki T, Shiraishi H (2000) Effects of repeated phencyclidine treatment on serotonin transporter in rat brain. Neurosci Lett 280:53–56

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Hannaway KE, Adelekun AE, Huang M, Jayathilake K, Meltzer HY (2013) D(1) receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behav Brain Res 238:36–43

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Hannaway KE, Adelekun AE, Jayathilake K, Meltzer HY (2012) Prevention of the phencyclidine-induced impairment in novel object recognition in female rats by co-administration of lurasidone or tandospirone, a 5-HT(1A) partial agonist. Neuropsychopharmacology 37:2175–2183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011a) Interaction of mGlu2/3 agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacol (Berl) 217:13–24

    Article  CAS  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011b) The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J Pharmacol Exp Ther 338:605–614

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Meltzer HY (2012) The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats. Psychopharmacol (Berl) 221:205–215

    Article  CAS  Google Scholar 

  • Horiguchi M, Meltzer HY (2013) Blonanserin reverses the phencyclidine (PCP)-induced impairment in novel object recognition (NOR) in rats: role of indirect 5-HT(1A) partial agonism. Behav Brain Res 247:158–164

    Article  CAS  PubMed  Google Scholar 

  • Idris N, Neill J, Grayson B, Bang-Andersen B, Witten LM, Brennum LT, Arnt J (2010) Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacol (Berl) 208:23–36

    Article  CAS  Google Scholar 

  • Itokawa M, Yamada K, Yoshitsugu K, Toyota T, Suga T, Ohba H, Watanabe A, Hattori E, Shimizu H, Kumakura T, Ebihara M, Meerabux JM, Toru M, Yoshikawa T (2003) A microsatellite repeat in the promoter of the N-methyl-D-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics 13:271–278

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Jenkins TA, Harte MK, McKibben CE, Elliott JJ, Reynolds GP (2008) Disturbances in social interaction occur along with pathophysiological deficits following sub-chronic phencyclidine administration in the rat. Behav Brain Res 194:230–235

    Article  CAS  PubMed  Google Scholar 

  • Jenkins TA, Harte MK, Reynolds GP (2010) Effect of subchronic phencyclidine administration on sucrose preference and hippocampal parvalbumin immunoreactivity in the rat. Neurosci Lett 471:144–147

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Dazzi L, Chhatwal JP, Verrico CD, Roth RH (1998a) Reduced prefrontal cortical dopamine, but not acetylcholine, release in vivo after repeated, intermittent phencyclidine administration to rats. Neurosci Lett 258:175–178

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Elsworth JD, Redmond DE Jr, Roth RH (1997a) Phencyclidine increases forebrain monoamine metabolism in rats and monkeys: modulation by the isomers of HA966. J Neurosci 17:1769–1775

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR (2001) Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats. Neuropsychopharmacology 24:66–74

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR, Elsworth JD, Redmond DE Jr, Roth RH (1999) Altered frontal cortical dopaminergic transmission in monkeys after subchronic phencyclidine exposure: involvement in frontostriatal cognitive deficits. Neuroscience 90:823–832

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR, Roth RH (1998b) Subchronic phencyclidine administration increases mesolimbic dopaminergic system responsivity and augments stress- and psychostimulant-induced hyperlocomotion. Neuropsychopharmacology 19:105–113

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Tran A, Le D, Youngren KD, Roth RH (1997b) Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat. Neuropsychopharmacology 17:92–99

    Article  CAS  PubMed  Google Scholar 

  • Jones GH, Marsden CA, Robbins TW (1991) Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: neurochemical correlates. Behav Brain Res 43:35–50

    Article  CAS  PubMed  Google Scholar 

  • Joyce E, Hutton S, Mutsatsa S, Gibbins H, Webb E, Paul S, Robbins T, Barnes T (2002) Executive dysfunction in first-episode schizophrenia and relationship to duration of untreated psychosis: the West London Study. Br J Psychiatry Suppl 43:s38–44

    Article  PubMed  Google Scholar 

  • Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647

    Article  CAS  PubMed  Google Scholar 

  • Kunitachi S, Fujita Y, Ishima T, Kohno M, Horio M, Tanibuchi Y, Shirayama Y, Iyo M, Hashimoto K (2009) Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors. Brain Res 1279:189–196

    Article  CAS  PubMed  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25:455–467

    Article  CAS  PubMed  Google Scholar 

  • Lecourtier L, Neijt HC, Kelly PH (2004) Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia. Eur J Neurosci 19:2551–2560

    Article  PubMed  Google Scholar 

  • Leeson VC, Robbins TW, Matheson E, Hutton SB, Ron MA, Barnes TR, Joyce EM (2009) Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry 66:586–593

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Z, Kim CH, Ichikawa J, Meltzer HY (2003) Effect of repeated administration of phencyclidine on spatial performance in an eight-arm radial maze with delay in rats and mice. Pharmacol Biochem Behav 75:335–340

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Lerdrup L, Sugino H, Akazawa H, Amada N, McQuade RD, Stensbol TB, Bundgaard C, Arnt J, Kikuchi T (2014) Brexpiprazole II: antipsychotic-like and procognitive effects of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther 350:605–614

    Article  PubMed  CAS  Google Scholar 

  • Marquis JP, Audet MC, Dore FY, Goulet S (2007) Delayed alternation performance following subchronic phencyclidine administration in rats depends on task parameters. Prog Neuropsychopharmacol Biol Psychiatry 31:1108–1112

    Article  CAS  PubMed  Google Scholar 

  • Marquis JP, Goulet S, Dore FY (2003) Schizophrenia-like syndrome inducing agent phencyclidine failed to impair memory for temporal order in rats. Neurobiol Learn Mem 80:158–167

    Article  CAS  PubMed  Google Scholar 

  • Martin P, Carlsson ML, Hjorth S (1998) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport 9:2985–2988

    Article  CAS  PubMed  Google Scholar 

  • McKibben CE, Jenkins TA, Adams HN, Harte MK, Reynolds GP (2010) Effect of pretreatment with risperidone on phencyclidine-induced disruptions in object recognition memory and prefrontal cortex parvalbumin immunoreactivity in the rat. Behav Brain Res 208:132–136

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Beck JP, Woolley ML, Neill JC (2008) A preliminary investigation into the effects of antipsychotics on sub-chronic phencyclidine-induced deficits in attentional set-shifting in female rats. Behav Brain Res 189:152–158

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Grayson B, Idris NF, Lesage AS, Pemberton DJ, Mackie C, Neill JC (2011) Activation of alpha7 nicotinic receptors improves phencyclidine-induced deficits in cognitive tasks in rats: implications for therapy of cognitive dysfunction in schizophrenia. Eur Neuropsychopharmacol 21:333–343

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Idris NF, Grayson B, Gendle DF, Mackie C, Lesage AS, Pemberton DJ, Neill JC (2012) PNU-120596, a positive allosteric modulator of alpha7 nicotinic acetylcholine receptors, reverses a sub-chronic phencyclidine-induced cognitive deficit in the attentional set-shifting task in female rats. J Psychopharmacol 26:1265–1270

    Article  PubMed  CAS  Google Scholar 

  • McLean SL, Idris NF, Woolley ML, Neill JC (2009a) D(1)-like receptor activation improves PCP-induced cognitive deficits in animal models: Implications for mechanisms of improved cognitive function in schizophrenia. Eur Neuropsychopharmacol 19:440–450

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Neill JC, Idris NF, Marston HM, Wong EH, Shahid M (2010) Effects of asenapine, olanzapine, and risperidone on psychotomimetic-induced reversal-learning deficits in the rat. Behav Brain Res 214:240–247

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Woolley ML, Thomas D, Neill JC (2009b) Role of 5-HT receptor mechanisms in sub-chronic PCP-induced reversal learning deficits in the rat. Psychopharmacol (Berl) 206:403–414

    Article  CAS  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013) Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 16:2181–2194

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam B, Krystal JH (2012) Capturing the angel in “angel dust”: twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans. Schizophr Bull 38:942–949

    Article  PubMed Central  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Moser E, Moser MB, Andersen P (1993) Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13:3916–3925

    CAS  PubMed  Google Scholar 

  • Murray EA, Bussey TJ, Saksida LM (2007) Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu Rev Neurosci 30:99–122

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima T, Fukaya H, Yamaguchi K, Ishikawa K, Furukawa H, Kameyama T (1987) Development of tolerance and supersensitivity to phencyclidine in rats after repeated administration of phencyclidine. Eur J Pharmacol 135:23–33

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Takuma K, Kamei H, Ito Y, Nakamichi N, Ibi D, Nakanishi Y, Murai M, Mizoguchi H, Nabeshima T, Yamada K (2007) Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem 14:117–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432

    Article  CAS  PubMed  Google Scholar 

  • Newell KA, Zavitsanou K, Huang XF (2007a) Opposing short- and long-term effects on muscarinic M1/4 receptor binding following chronic phencyclidine treatment. J Neurosci Res 85:1358–1363

    Article  CAS  PubMed  Google Scholar 

  • Newell KA, Zavitsanou K, Huang XF (2007b) Short and long term changes in NMDA receptor binding in mouse brain following chronic phencyclidine treatment. J Neural Transm 114:995–1001

    Article  CAS  PubMed  Google Scholar 

  • Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK (2004) Identification of separable cognitive factors in schizophrenia. Schizophr Res 72:29–39

    Article  PubMed  Google Scholar 

  • Ostlund SB, Balleine BW (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27:4819–4825

    Article  CAS  PubMed  Google Scholar 

  • Pantelis C, Barber FZ, Barnes TR, Nelson HE, Owen AM, Robbins TW (1999) Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37:251–270

    Article  CAS  PubMed  Google Scholar 

  • Pantelis C, Harvey CA, Plant G, Fossey E, Maruff P, Stuart GW, Brewer WJ, Nelson HE, Robbins TW, Barnes TR (2004) Relationship of behavioural and symptomatic syndromes in schizophrenia to spatial working memory and attentional set-shifting ability. Psychol Med 34:693–703

    Article  CAS  PubMed  Google Scholar 

  • Pickering C, Ericson M, Soderpalm B (2013) Chronic phencyclidine increases synapsin-1 and synaptic adaptation proteins in the medial prefrontal cortex. ISRN Psychiatry 2013:620361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pihlajamaki M, Tanila H, Kononen M, Hanninen T, Hamalainen A, Soininen H, Aronen HJ (2004) Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19:1939–1949

    Article  PubMed  Google Scholar 

  • Podhorna J, Didriksen M (2005) Performance of male C57BL/6J mice and Wistar rats in the water maze following various schedules of phencyclidine treatment. Behav Pharmacol 16:25–34

    Article  CAS  PubMed  Google Scholar 

  • Pratt JA, Winchester C, Egerton A, Cochran SM, Morris BJ (2008) Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br J Pharmacol 153(Suppl 1):S465–470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quarta D, Large CH (2011) Effects of lamotrigine on PCP-evoked elevations in monoamine levels in the medial prefrontal cortex of freely moving rats. J Psychopharmacol 25:1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Redrobe JP, Bull S, Plath N (2010) Translational aspects of the novel object recognition task in rats abstinent following sub-chronic treatment with phencyclidine (PCP): effects of modafinil and relevance to cognitive deficits in schizophrenia. Front Psychiatry 1:146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redrobe JP, Elster L, Frederiksen K, Bundgaard C, de Jong IE, Smith GP, Bruun AT, Larsen PH, Didriksen M (2012) Negative modulation of GABAA alpha5 receptors by RO4938581 attenuates discrete sub-chronic and early postnatal phencyclidine (PCP)-induced cognitive deficits in rats. Psychopharmacol (Berl) 221:451–468

    Article  CAS  Google Scholar 

  • Reynolds LM, Cochran SM, Morris BJ, Pratt JA, Reynolds GP (2005) Chronic phencyclidine administration induces schizophrenia-like changes in N-acetylaspartate and N-acetylaspartylglutamate in rat brain. Schizophr Res 73:147–152

    Article  PubMed  Google Scholar 

  • Rice SR, Niu N, Berman DB, Heston LL, Sobell JL (2001) Identification of single nucleotide polymorphisms (SNPs) and other sequence changes and estimation of nucleotide diversity in coding and flanking regions of the NMDAR1 receptor gene in schizophrenic patients. Mol Psychiatry 6:274–284

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW (1990) The case of frontostriatal dysfunction in schizophrenia. Schizophr Bull 16:391–402

    Article  CAS  PubMed  Google Scholar 

  • Rodefer JS, Murphy ER, Baxter MG (2005) PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21:1070–1076

    Article  PubMed  Google Scholar 

  • Rodefer JS, Nguyen TN, Karlsson JJ, Arnt J (2008) Reversal of subchronic PCP-induced deficits in attentional set shifting in rats by sertindole and a 5-HT6 receptor antagonist: comparison among antipsychotics. Neuropsychopharmacology 33:2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Lemaire S (1991) Role of the sigma receptor in the inhibition of [3H]-noradrenaline uptake in brain synaptosomes and adrenal chromaffin cells. Br J Pharmacol 103:1917–1922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roseman AS, McGregor C, Thornton JE (2012) Estradiol attenuates the cognitive deficits in the novel object recognition task induced by sub-chronic phencyclidine in ovariectomized rats. Behav Brain Res 233:105–112

    Article  CAS  PubMed  Google Scholar 

  • Roth BL, Gibbons S, Arunotayanun W, Huang XP, Setola V, Treble R, Iversen L (2013) The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One 8, e59334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarter M (2004) Animal cognition: defining the issues. Neurosci Biobehav Rev 28:645–650

    Article  PubMed  Google Scholar 

  • Scheuerecker J, Ufer S, Zipse M, Frodl T, Koutsouleris N, Zetzsche T, Wiesmann M, Albrecht J, Bruckmann H, Schmitt G, Moller HJ, Meisenzahl EM (2008) Cerebral changes and cognitive dysfunctions in medication-free schizophrenia - an fMRI study. J Psychiatr Res 42:469–476

    Article  CAS  PubMed  Google Scholar 

  • Schretlen DJ, Cascella NG, Meyer SM, Kingery LR, Testa SM, Munro CA, Pulver AE, Rivkin P, Rao VA, Diaz-Asper CM, Dickerson FB, Yolken RH, Pearlson GD (2007) Neuropsychological functioning in bipolar disorder and schizophrenia. Biol Psychiatry 62:179–186

    Article  PubMed Central  PubMed  Google Scholar 

  • Schroeder U, Schroeder H, Schwegler H, Sabel BA (2000) Neuroleptics ameliorate phencyclidine-induced impairments of short-term memory. Br J Pharmacol 130:33–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scoriels L, Barnett JH, Soma PK, Sahakian BJ, Jones PB (2012) Effects of modafinil on cognitive functions in first episode psychosis. Psychopharmacol (Berl) 220:249–258

    Article  CAS  Google Scholar 

  • Secher T, Berezin V, Bock E, Glenthoj B (2009) Effect of an NCAM mimetic peptide FGL on impairment in spatial learning and memory after neonatal phencyclidine treatment in rats. Behav Brain Res 199:288–297

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Ko F, Tallerico T (2005) Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics. Mol Psychiatry 10:877–883

    Article  CAS  PubMed  Google Scholar 

  • Shirayama Y, Yamamoto A, Nishimura T, Katayama S, Kawahara R (2007) Subsequent exposure to the choline uptake enhancer MKC-231 antagonizes phencyclidine-induced behavioral deficits and reduction in septal cholinergic neurons in rats. Eur Neuropsychopharmacol 17:616–626

    Article  CAS  PubMed  Google Scholar 

  • Sircar R, Rudy JW (1998) Repeated neonatal phencyclidine treatment impairs performance of a spatial task in juvenile rats. Ann N Y Acad Sci 844:303–309

    Article  CAS  PubMed  Google Scholar 

  • Snigdha S, Horiguchi M, Huang M, Li Z, Shahid M, Neill JC, Meltzer HY (2010) Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 332:622–631

    Article  CAS  PubMed  Google Scholar 

  • Snigdha S, Idris N, Grayson B, Shahid M, Neill JC (2011) Asenapine improves phencyclidine-induced object recognition deficits in the rat: evidence for engagement of a dopamine D1 receptor mechanism. Psychopharmacol (Berl) 214:843–853

    Article  CAS  Google Scholar 

  • Steckler T (2015) Preclinical data reproducibility for R&D-the challenge for neuroscience. Psychopharmacol (Berl) 232:317–320

    Article  CAS  Google Scholar 

  • Stefani MR, Moghaddam B (2002) Effects of repeated treatment with amphetamine or phencyclidine on working memory in the rat. Behav Brain Res 134:267–274

    Article  CAS  PubMed  Google Scholar 

  • Steward LJ, Kennedy MD, Morris BJ, Pratt JA (2004) The atypical antipsychotic drug clozapine enhances chronic PCP-induced regulation of prefrontal cortex 5-HT2A receptors. Neuropharmacology 47:527–537

    Article  CAS  PubMed  Google Scholar 

  • Steward LJ, Kennedy MD, Morris BJ, Pratt JA (2012) Chronic phencyclidine (PCP)-induced modulation of muscarinic receptor mRNAs in rat brain: impact of antipsychotic drug treatment. Neuropharmacology 62:1554–1563

    Article  CAS  PubMed  Google Scholar 

  • Stubley-Weatherly L, Harding JW, Wright JW (1996) Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res 716:29–38

    Article  CAS  PubMed  Google Scholar 

  • Tait DS, Chase EA, Brown VJ (2014) Attentional set-shifting in rodents: a review of behavioural methods and pharmacological results. Curr Pharm Des 20:5046–5059

    Article  CAS  PubMed  Google Scholar 

  • Tanibuchi Y, Fujita Y, Kohno M, Ishima T, Takatsu Y, Iyo M, Hashimoto K (2009) Effects of quetiapine on phencyclidine-induced cognitive deficits in mice: a possible role of alpha1-adrenoceptors. Eur Neuropsychopharmacol 19:861–867

    Article  CAS  PubMed  Google Scholar 

  • Turetsky BI, Moberg PJ, Roalf DR, Arnold SE, Gur RE (2003) Decrements in volume of anterior ventromedial temporal lobe and olfactory dysfunction in schizophrenia. Arch Gen Psychiatry 60:1193–1200

    Article  PubMed  Google Scholar 

  • Turgeon SM, Case LC (2001) The effects of phencyclidine pretreatment on amphetamine-induced behavior and c-Fos expression in the rat. Brain Res 888:302–305

    Article  CAS  PubMed  Google Scholar 

  • Turgeon SM, Lin T, Subramanian M (2007) Subchronic phencyclidine exposure potentiates the behavioral and c-Fos response to stressful stimuli in rats. Pharmacol Biochem Behav 88:73–81

    Article  CAS  PubMed  Google Scholar 

  • Turner DC, Clark L, Pomarol-Clotet E, McKenna P, Robbins TW, Sahakian BJ (2004) Modafinil improves cognition and attentional set shifting in patients with chronic schizophrenia. Neuropsychopharmacology 29:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Unschuld PG, Buchholz AS, Varvaris M, van Zijl PC, Ross CA, Pekar JJ, Hock C, Sweeney JA, Tamminga CA, Keshavan MS, Pearlson GD, Thaker GK, Schretlen DJ (2014) Prefrontal brain network connectivity indicates degree of both schizophrenia risk and cognitive dysfunction. Schizophr Bull 40:653–664

    Article  PubMed Central  PubMed  Google Scholar 

  • Ward D, Trevor A (1981) Phenylclindine-induced alteration in rat muscarinic cholinergic receptor regulation. Eur J Pharmacol 74:189–193

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Illowsky BP (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch Gen Psychiatry 45:609–615

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43:114–124

    Article  CAS  PubMed  Google Scholar 

  • Weissman AD, Dam M, London ED (1987) Alterations in local cerebral glucose utilization induced by phencyclidine. Brain Res 435:29–40

    Article  CAS  PubMed  Google Scholar 

  • Wesseling H, Chan MK, Tsang TM, Ernst A, Peters F, Guest PC, Holmes E, Bahn S (2013) A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology. Neuropsychopharmacology 38:2532–2544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ (2004) Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci 24:5901–5908

    Article  CAS  PubMed  Google Scholar 

  • Wittkampf LC, Arends J, Timmerman L, Lancel M (2012) A review of modafinil and armodafinil as add-on therapy in antipsychotic-treated patients with schizophrenia. Ther Adv Psychopharmacol 2:115–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wobrock T, Ecker UK, Scherk H, Schneider-Axmann T, Falkai P, Gruber O (2009) Cognitive impairment of executive function as a core symptom of schizophrenia. World J Biol Psychiatry 10:442–451

    Article  PubMed  Google Scholar 

  • Yee BK (2000) Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat. Neuroscience 95:675–689

    Article  CAS  PubMed  Google Scholar 

  • Yoo HJ, Lee SA, Kim SY, Kang JG, Lee JG (2006) Compromised memory function in schizophrenia and temporal lobe epilepsy. J Neuropsychiatry Clin Neurosci 18:199–207

    Article  PubMed  Google Scholar 

  • Young JW, Powell SB, Risbrough V, Marston HM, Geyer MA (2009) Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther 122:150–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Financial disclosure

SJ and HS declare being employees of Orion Corp. Orion Pharma. JT, GK and TS declare being employees of Janssen Pharmaceuticals. NP and LL declare being employees of Lundbeck. TB, MH and RW declare being employees of F. Hoffmann-La Roche Ltd. The research and collaboration leading to the results and review has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna K. Janhunen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 96 kb)

ESM 2

(PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janhunen, S.K., Svärd, H., Talpos, J. et al. The subchronic phencyclidine rat model: relevance for the assessment of novel therapeutics for cognitive impairment associated with schizophrenia. Psychopharmacology 232, 4059–4083 (2015). https://doi.org/10.1007/s00213-015-3954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-3954-6

Keywords

Navigation