Skip to main content
Log in

The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Atypical antipsychotic drugs (APDs), many of which are direct or indirect serotonin (5-HT)1A agonists, and tandospirone, a 5-HT1A partial agonist, have been reported to improve cognition in schizophrenia.

Objectives and methods

We tested the effect of 5-HT1A agonism, alone, and in combination with other psychotropic agents, including the atypical APD, lurasidone, in reversing the deficit in novel object recognition (NOR) induced by subchronic treatment with the non-competitive NMDA receptor antagonist, phencyclidine (PCP) (2 mg/kg, b.i.d., for 7 days).

Results

Subchronic treatment with PCP induced a persistent NOR deficit. Lurasidone (0.1 mg/kg), a potent 5-HT1A partial agonist, 5-HT2A antagonist, and weaker D2 antagonist, tandospirone (0.6 mg/kg), and the selective post-synaptic 5-HT1A agonist, F15599 (0.16 mg/kg), ameliorated the subchronic PCP-induced-NOR deficit. The 5-HT1A antagonist, WAY100635 (0.6 mg/kg), blocked the ameliorating effects of tandospirone and lurasidone. The combination of sub-effective doses of tandospirone (0.2 mg/kg) and lurasidone (0.03 mg/kg) also reversed the PCP-induced NOR-deficit. Buspirone, a less potent partial 5-HT1A agonist than tandospirone, was less effective. Co-administration of tandospirone (0.2 mg/kg) and pimavanserin (3 mg/kg), a relatively selective 5-HT2A receptor inverse agonist, did not reverse the effect of sub-chronic PCP on NOR. The D2 antagonist, haloperidol, blocked the ameliorating effect of tandospirone on the PCP-induced deficit in NOR.

Conclusions

These results indicate that 5-HT1A agonism is adequate to ameliorate the PCP-induced impairment in NOR and suggest further study of utilizing the combination of a 5-HT1A agonist and an atypical APD to ameliorate some types of cognitive impairment in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bantick RA, Deakin JF, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Boast C, Bartolomeo AC, Morris H, Moyer JA (1999) 5HT antagonists attenuate MK801-impaired radial arm maze performance in rats. Neurobiol Learn Mem 71(3):259–271

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorso S, Meltzer HY, Li Z, Dai J, Alboszta AR, Ichikawa J (2002) SR46349-B, a 5-HT(2A/2 C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 27(3):430–441

    Article  PubMed  CAS  Google Scholar 

  • Burnet PW, Eastwood SL, Harrison PJ (1996) 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 15(5):442–455

    Article  PubMed  CAS  Google Scholar 

  • Burnet PW, Eastwood SL, Harrison PJ (1997) [3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem Int 30(6):565–574

    Article  PubMed  CAS  Google Scholar 

  • Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38(3):227–235

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26(4–6):365–384

    PubMed  CAS  Google Scholar 

  • Depoortère R, Auclair AL, Bardin L, Bruins Slot L, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2007) F15063, a compound with D2/D3 antagonist, 5-HT 1A agonist and D4 partial agonist properties. III. Activity in models of cognition and negative symptoms. Br J Pharmacol 151(2):266–277

    Article  PubMed  Google Scholar 

  • Depoortère R, Auclair AL, Bardin L, Colpaert FC, Vacher B, Newman-Tancredi A (2010) F15599, a preferential post-synaptic 5-HT(1A) receptor agonist: activity in models of cognition in comparison with reference 5-HT(1A) receptor agonists. Eur Neuropsychopharmacol 20:641–654

    Article  PubMed  Google Scholar 

  • Grayson B, Idris NF, Neill JC (2007) Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res 184(1):31–38, 22

    Article  PubMed  CAS  Google Scholar 

  • Gurevich EV, Joyce JN (1997) Alterations in the cortical serotonergic system in schizophrenia: a postmortem study. Biol Psychiatry 42(7):529–545

    Article  PubMed  CAS  Google Scholar 

  • Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY (1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 34:02–712

    Article  Google Scholar 

  • Hagiwara H, Fujita Y, Ishima T, Kunitachi S, Shirayama Y, Iyo M, Hashimoto K (2008) Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antipsychotic drug perospirone: role of serotonin 5-HT1A receptors. Eur Neuropsychopharmacol 18(6):448–454

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Nishino N, Nakai H, Tanaka C (1991) Increase in serotonin 5-HT1A receptors in prefrontal and temporal cortices of brains from patients with chronic schizophrenia. Life Sci 48(4):355–363

    Article  PubMed  CAS  Google Scholar 

  • Hirst WD, Andree TH, Aschmies S, Childers WE, Comery TA, Dawson LA, Day M, Feingold IB, Grauer SM, Harrison BL, Hughes ZA, Kao J, Kelly MG, van der Lee H, Rosenzweig-Lipson S, Saab AL, Smith DL, Sullivan K, Rizzo SJ, Tio C, Zhang MY, Schechter LE (2008) Correlating efficacy in rodent cognition models with in vivo 5-hydroxytryptamine1a receptor occupancy by a novel antagonist, (R)-N-(2-methyl-(4-indolyl-1-piperazinyl)ethyl)-N-(2-pyridinyl)-cyclohexane carboxamide (WAY-101405). J Pharmacol Exp Ther 325(1):134–145

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011a) Interaction of mGlu(2/3) agonism with clozapine and lurasidone to restore novel object recognition in subchronic phencyclidine-treated rats. Psychopharmacology (Berl) 217:13–24

    Article  CAS  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011b) The role of 5-HT7 receptors in the phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats. J Pharmacol Exp Ther 338:605–614

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O'Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76(5):1521–1531

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa J, Li Z, Dai J, Meltzer HY (2002) Atypical antipsychotic drugs, quetiapine, iloperidone, and melperone, preferentially increase dopamine and acetylcholine release in rat medial prefrontal cortex: role of 5-HT1A receptor agonism. Brain Res 956(2):349–357

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R, Matsumoto K, Nishikawa H, Ueda Y, Toma S, Oki H, Tanno N, Saji I, Ito A, Ohno Y, Nakamura M (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-HT7 and 5-HT1A receptor activity. J Pharmacol Exp Ther 334:171–181

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    PubMed  CAS  Google Scholar 

  • Kargieman L, Riga MS, Artigas F, Celada P (2011) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) receptor-dependent mechanism. Neuropsychopharmacology. doi:10.1038/npp.2011.249

  • Kasper S, Tauscher J, Willeit M, Stamenkovic M, Neumeister A, Küfferle B, Barnas C, Stastny J, Praschak-Rieder N, Pezawas L, de Zwaan M, Quiner S, Pirker W, Asenbaum S, Podreka I, Brücke T (2002) Receptor and transporter imaging studies in schizophrenia, depression, bulimia and Tourette's disorder—implications for psychopharmacology. World J Biol Psychiatry 3(3):133–146

    Article  PubMed  Google Scholar 

  • Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE Investigators, Neurocognitive Working Group (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64(6):633–647

    Article  PubMed  CAS  Google Scholar 

  • Kenny JT, Meltzer HY (1991) Attention and higher cortical functions in schizophrenia. J Neuropsychiatry Clin Neurosci 3(3):269–275

    PubMed  CAS  Google Scholar 

  • Krystal JH, D'Souza DC, Petrakis IL, Belger A, Berman RM, Charney DS, Abi-Saab W, Madonick S (1999) NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harv Rev Psychiatry 7(3):125–143

    PubMed  CAS  Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781

    PubMed  CAS  Google Scholar 

  • Lahti AC, Koffel B, LaPorte D, Tamminga CA (1995) Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25(4):455–467

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ichikawa J, Huang M, Prus AJ, Dai J, Meltzer HY (2005) ACP-103, a 5-HT2A/2 C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Psychopharmacology (Berl) 183(2):144–153

    Article  CAS  Google Scholar 

  • Lladó-Pelfort L, Assié MB, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT(1A) receptor agonist, at postsynaptic 5-HT(1A) receptors. Br J Pharmacol 160(8):1929–1940

    PubMed  Google Scholar 

  • Maurel JL, Autin JM, Funes P, Newman-Tancredi A, Colpaert F, Vacher B (2007) High-efficacy 5-HT1A agonists for antidepressant treatment: a renewed opportunity. J Med Chem 50(20):5024–5033

    Article  PubMed  CAS  Google Scholar 

  • McLean SL, Woolley ML, Thomas D, Neill JC (2009) Role of 5-HT receptor mechanisms in sub-chronic PCP-induced reversal learning deficits in the rat. Psychopharmacology (Berl) 206(3):403–414

    Article  CAS  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21(2 Suppl):106S–115S

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Huang M (2008) In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res 172:177–197

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195(1):98–102

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology 213(2–3):289–305

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Loebel AD, Schweizer E (2009) Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs 18(11):1715–1726

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H, Nabeshima T (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology (Berl) 202(1–3):315–328

    Article  CAS  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128(3):419–432

    Article  PubMed  CAS  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20(2):106–118

    Article  PubMed  CAS  Google Scholar 

  • Newman-Tancredi A (2010) The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives. Curr Opin Investig Drugs 11(7):802–812

    PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Gavaudan S, Conte C, Chaput C, Touzard M, Verrièle L, Audinot V, Millan MJ (1998) Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study. Eur J Pharmacol 355(2–3):245–256

    Article  PubMed  CAS  Google Scholar 

  • Newman-Tancredi A, Martel JC, Assié MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156(2):338–353

    Article  PubMed  CAS  Google Scholar 

  • Piskulić D, Olver JS, Maruff P, Norman TR (2009) Treatment of cognitive dysfunction in chronic schizophrenia by augmentation of atypical antipsychotics with buspirone, a partial 5-HT(1A) receptor agonist. Hum Psychopharmacol 24(6):437–446

    Article  PubMed  Google Scholar 

  • Pitsikas N, Rigamonti AE, Cella SG, Muller EE (2003) The 5-HT 1A receptor antagonist WAY 100635 improves rats performance in different models of amnesia evaluated by the object recognition task. Brain Res 983(1–2):215–222

    Article  PubMed  CAS  Google Scholar 

  • Rollema H, Lu Y, Schmidt AW, Zorn SH (1997) Clozapine increases dopamine release in prefrontal cortex by 5-HT1A receptor activation. Eur J Pharmacol 338(2):R3–R5

    Article  PubMed  CAS  Google Scholar 

  • Saykin AJ, Gur RC, Gur RE, Mozley PD, Mozley LH, Resnick SM, Kester DB, Stafiniak P (1991) Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry 48(7):618–624

    Article  PubMed  CAS  Google Scholar 

  • Simpson MD, Lubman DI, Slater P, Deakin JF (1996) Autoradiography with [3H]8-OH-DPAT reveals increases in 5-HT(1A) receptors in ventral prefrontal cortex in schizophrenia. Biol Psychiatry 39(11):919–928

    Article  PubMed  CAS  Google Scholar 

  • Snigdha S, Neill JC (2008) Improvement of phencyclidine-induced social behaviour deficits in rats: involvement of 5-HT1A receptors. Behav Brain Res 191(1):26–31

    Article  PubMed  CAS  Google Scholar 

  • Snigdha S, Horiguchi M, Huang M, Li Z, Shahid M, Neill JC, Meltzer HY (2010) Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 332(2):622–631

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, O'Neill HC, Rose GM, Luthman J (2006) The 5-HT(1A) receptor active compounds (R)-8-OH-DPAT and (S)-UH-301 modulate auditory evoked EEG responses in rats. Amino Acids 31(4):365–375

    Article  PubMed  CAS  Google Scholar 

  • Stone WA, Hsi X (2011) Declarative memory deficits and schizophrenia: problems and prospects, Neurobiol Learning Memory online 20 April 2011

  • Sumiyoshi T, Stockmeier CA, Overholser JC, Dilley GE, Meltzer HY (1996) Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res 708(1–2):209–214

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Uehara T, Kurachi M, Meltzer HY (2000) Effect of adjunctive treatment with serotonin-1A agonist tandospirone on memory functions in schizophrenia. J Clin Psychopharmacol 20(3):386–388

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Nohara S, Yamashita I, Kurachi M, Sumiyoshi C, Jayathilake K, Meltzer HY (2001a) Enhancement of cognitive performance in schizophrenia by addition of tandospirone to neuroleptic treatment. Am J Psychiatry 158(10):1722–1725

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Matsui M, Yamashita I, Nohara S, Kurachi M, Uehara T, Sumiyoshi S, Sumiyoshi C, Meltzer HY (2001b) The effect of tandospirone, a serotonin(1A) agonist, on memory function in schizophrenia. Biol Psychiatry 49(10):861–868

    Article  PubMed  CAS  Google Scholar 

  • Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY (2007) Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res 95(1–3):158–168

    Article  PubMed  Google Scholar 

  • Tanaka H, Tatsuno T, Shimizu H, Hirose A, Kumasaka Y, Nakamura M (1995) Effects of tandospirone on second messenger systems and neurotransmitter release in the rat brain. Gen Pharmacol 26(8):1765–1772

    Article  PubMed  CAS  Google Scholar 

  • Tauscher J, Kapur S, Verhoeff NP, Hussey DF, Daskalakis ZJ, Tauscher-Wisniewski S, Wilson AA, Houle S, Kasper S, Zipursky RB (2002) Brain serotonin 5-HT(1A) receptor binding in schizophrenia measured by positron emission tomography and [11 C]WAY-100635. Arch Gen Psychiatry 59(6):514–520

    Article  PubMed  CAS  Google Scholar 

  • Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J, Del Tredici AL, Piu F, Schiffer HH, Ott TR, Burstein ES, Uldam AK, Thygesen MB, Schlienger N, Andersson CM, Son TY, Harvey SC, Powell SB, Geyer MA, Tolf BR, Brann MR, Davis RE (2006) Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 317(2):910–918

    Article  PubMed  CAS  Google Scholar 

  • Wedzony K, Maćkowiak M, Zajaczkowski W, Fijał K, Chocyk A, Czyrak A (2000) WAY 100135, an antagonist of 5-HT1A serotonin receptors, attenuates psychotomimetic effects of MK-801. Neuropsychopharmacology 23(5):547–559

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Chudasama Y, Dalley JW, Theobald DE, Glennon JC, Robbins TW (2003) Intra-prefrontal 8-OH-DPAT and M100907 improve visuospatial attention and decrease impulsivity on the five-choice serial reaction time task in rats. Psychopharmacology (Berl) 167(3):304–314

    CAS  Google Scholar 

  • Woodward ND, Purdon SE, Meltzer HY, Zald DH (2005) A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol 8(3):457–472

    Article  PubMed  CAS  Google Scholar 

  • Yasuno F, Suhara T, Nakayama T, Ichimiya T, Okubo Y, Takano A, Ando T, Inoue M, Maeda J, Suzuki K (2003) Inhibitory effect of hippocampal 5-HT1A receptors on human explicit memory. Am J Psychiatry 160(2):334–340

    Article  PubMed  Google Scholar 

  • Yoshino T, Nisijima K, Katoh S, Yui K, Nakamura M (2002) Tandospirone potentiates the fluoxetine-induced increases in extracellular dopamine via 5-HT(1A) receptors in the rat medial frontal cortex. Neurochem Int 40(4):355–360

    Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by a grant from Dainippon Sumitomo Pharma Co. Ltd. We thank the National Institute of Drug Abuse for providing PCP for these studies.

Conflicts of interest

Herbert Y. Meltzer: consultant to Cypress, Dainippon Sumitomo Pharma, Janssen, Merck, and Pfizer and shareholder of SureGene, Bio Vail, and ACADIA. Masakuni Horiguchi: employed as a research scientist by Dainippon Sumitomo Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Meltzer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiguchi, M., Meltzer, H.Y. The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats. Psychopharmacology 221, 205–215 (2012). https://doi.org/10.1007/s00213-011-2561-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2561-4

Keywords

Navigation