Skip to main content

Advertisement

Log in

Time-course of extracellular nicotine and cotinine levels in rat brain following administration of nicotine: effects of route and ethanol coadministration

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine and ethanol are commonly coabused drugs, and nicotine-laced ethanol products are growing in popularity. However, little is known about time-course changes in extracellular nicotine and cotinine levels in rat models of ethanol and nicotine coabuse.

Objectives

The objective of the present study was to determine the time-course changes in brain levels of nicotine and cotinine following subcutaneous (SC) and intragastric (IG) nicotine administration in alcohol-preferring (P) and Wistar rats.

Methods

In vivo microdialysis was used to collect dialysate samples from the nucleus accumbens shell (NACsh) for nicotine and cotinine determinations, following SC administration of (-)-nicotine (0.18, 0.35, and 0.70 mg/kg) in female P and Wistar rats or IG administration of (-)-nicotine (0.35 and 0.70 mg/kg) in 15 % (v/v) ethanol or water in female P rats.

Results

SC nicotine produced nicotine and cotinine dialysate levels as high as 51 and 14 ng/ml, respectively. IG administration of 15 % EtOH + 0.70 mg/kg nicotine in P rats resulted in maximal nicotine and cotinine dialysate levels of 19 and 14 ng/ml, respectively, whereas administration of 0.70 mg/kg nicotine in water resulted in maximal nicotine and cotinine levels of 21 and 25 ng/ml, respectively. Nicotine and cotinine levels were detectable within the first 15 and 45 min, respectively, after IG administration.

Conclusions

Overall, the results of this study suggest that nicotine is rapidly adsorbed and produces relevant extracellular brain concentrations of nicotine and its pharmacologically active metabolite, cotinine. The persisting high brain concentrations of cotinine may contribute to nicotine addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Applegren LE, Hansson E, Schmiterlo CG (1962) The accumulation and metabolism of [14C]-labeled nicotine in the brain of mice and cats. Acta Physiol Scand 56:249–257

    Article  Google Scholar 

  • Barbieri RL, Gochberg J, Ryan KJ (1986) Nicotine, cotinine, and anabasine inhibit aromatase in human trophoblast in vitro. J Clin Invest 77:1727–1733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benowitz NL, Jacob P III (1993) Nicotine and cotinine elimination pharmacokinetics in smokers and nonsmokers. Clin Pharmacol Ther 53:316–323

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL, Porchet H, Jacob P 3rd (1990) Pharmacokinetics, metabolism, and pharmacodynamics of nicotine. In: Wonnacott S, Russell MAH, Stolerman IP (eds) Nicotine psychopharmacology. Oxford University Press, Oxford, pp 112–157

    Google Scholar 

  • Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd (2006) Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 79:480–488

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL, Hukkanen J, Jacob P 3rd (2009) Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol 192:29–60

    Article  CAS  PubMed  Google Scholar 

  • Berridge MS, Apana SM, Nagano KK, Berridge CE, Leisure GP, Boswell MV (2010) Smoking produces rapid rise of [11C]nicotine in human brain. Psychopharmacology 209:383–394

    Article  CAS  PubMed  Google Scholar 

  • Chin JH, Goldstein DB (1977) Drug tolerance in biomembranes: a spin label study of the effect of ethanol. Science 196:684–685

    Article  CAS  PubMed  Google Scholar 

  • Crooks PA, Li M, Dwoskin LP (1995) Determination of nicotine metabolites in rat brain after peripheral radiolabeled nicotine administration: detection of nornicotine. Drug Metab Dispos 23:1175–1177

    CAS  PubMed  Google Scholar 

  • Crooks PA, Li M, Dwoskin LP (1997) Metabolites of nicotine in rat brain after peripheral nicotine administration: cotinine, nornicotine, and norcotinine. Drug Metab Dispos 25:47–54

    CAS  PubMed  Google Scholar 

  • Deutsch J, Hegedus L, Greig NH, Rapoport SI, Soncrant TT (1992) Electron-impact and chemical ionization detection of nicotine and cotinine by gas chromatography-mass spectrometry in rat plasma and brain. J Chromatogr 579:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ding ZM, Rodd ZA, Engleman EA, McBride WJ (2009) Sensitization of ventral tegmental area dopamine neurons to the stimulating effects of ethanol. Alcohol Clin Exp Res 33:1571–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dominiak P, Fuchs G, von Toth S, Grobecker H (1985) Effects of nicotine and its major metabolites on blood pressure in anaesthetized rats. Klin Wochenschr 63:90–92

    Article  CAS  PubMed  Google Scholar 

  • Engleman EA, Ingraham CM, O’Brien CE, McBride WJ, Murphy JM (2004) Effect of housing conditions on sulpiride induced increases in extracellular dopamine (DA) levels in the nucleus accumbens of alcohol-preferring (P) rats. Brain Res 1022:247–250

    Article  CAS  PubMed  Google Scholar 

  • Eriksson K (1968) Genetic selection for voluntary alcohol consumption in the albino rat. Science 159:739–741

    Article  CAS  PubMed  Google Scholar 

  • Eriksson K (1969) Factors affecting voluntary alcohol consumption in the albino rat. Ann Zool Fenn 6:227–265

    Google Scholar 

  • Essman WB (1973) Nicotine-related neurochemical changes: some implications for motivational mechanisms and differences. In: Dunn WL Jr (ed) Smoking behavior: motives and incentives. Winston and Sons, Washington DC, pp 51–65

    Google Scholar 

  • Fuxe K, Everitt BJ, Hokfelt T (1979) On the action of nicotine and cotinine on central 5-hydroxytryptamine neurons. Pharmacol Biochem Behav 10:671–677

    Article  CAS  PubMed  Google Scholar 

  • Ghosheh O, Dwoskin LP, Li W-K, Crooks PA (1999) Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2’-14C]nicotine. Drug Metab Dispos 27:1448–1455

    CAS  PubMed  Google Scholar 

  • Gorrod JW, Jacob P III (1999) Analytical determination of nicotine and related compounds and their metabolites. Elsevier, Oxford

    Google Scholar 

  • Gorrod JW, Wahren J (1993) Nicotine and related alkaloids, absorption, distribution, metabolism, excretion. Chapman and Hall, London

    Book  Google Scholar 

  • Gruber B, Dinovo EC, Noble EP, Tewari S (1977) Ethanol induced conformational changes in rat brain microsomal membranes. Biochem Pharmacol 26:2181–2185

    Article  CAS  PubMed  Google Scholar 

  • Hauser SR, Katner SN, Deehan GA Jr, Ding ZM, Toalston JE, Scott BJ, Bell RL, McBride WJ, Rodd ZA (2012) Development of an oral operant nicotine-ethanol co-use model in alcohol-preferring (P) rats. Alcohol Clin Exp Res 36:1963–1972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hetland LB, Couri D (1974) Effects of ethanol on glutethimide absorption and distribution in relationship to a mechanism for toxicity enhancement. Toxicol Appl Pharmacol 30:26–35

    Article  CAS  Google Scholar 

  • Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115

    Article  CAS  PubMed  Google Scholar 

  • Isselbacher KJ (1977) Metabolic and hepatic effects of alcohol. New Engl J Med 296:612–616

    Article  CAS  Google Scholar 

  • Keenan RM, Hatsukami DK, Pentel PR, Thompson TN, Grillo ME (1994) Pharmacodynamic effects of cotinine in abstinent cigarette smokers. Clin Pharmacol Ther 55:581–590

    Article  CAS  PubMed  Google Scholar 

  • Kiianmaa K, Tuomainen P, Makova N, Seppä T, Mikkola JA, Petteri-Piepponen T, Ahtee L, Hyytiä P (2000) The effects of nicotine on locomotor activity and dopamine overflow in the alcohol-preferring AA and alcohol-avoiding ANA rats. Eur J Pharmacol 407:293–302

    Article  CAS  PubMed  Google Scholar 

  • Kyerematen GA, Vesell ES (1991) Metabolism of nicotine. Drug Metab Rev 23:3–41

    Article  CAS  PubMed  Google Scholar 

  • Lee AM, Messing RO (2011) Protein kinase C epsilon modulates nicotine consumption and dopamine reward signals in the nucleus accumbens. Proc Natl Acad Sci U S A 108:16080–16085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 190:269–319

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington DC

    Google Scholar 

  • Parnell SE, West JR, Chen WJ (2006) Nicotine decreases blood alcohol concentrations in adult rats: a phenomenon potentially related to gastric function. Alcohol Clin Exp Res 30(8):1408–1413

    Article  CAS  PubMed  Google Scholar 

  • Patterson TR, Stringham JD, Meikle AW (1990) Nicotine and cotinine inhibit steroidogenesis in mouse Leydig cells. Life Sci 46:265–272

    Article  CAS  PubMed  Google Scholar 

  • Paul CJ, Whitehouse LW (1977) Metabolic basis for the supra-additive effect of ethanol-diazepam combination in mice. Br J Pharmacol 60:83–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, New York

    Google Scholar 

  • Perry KW, Fuller RW (1992) Effect of fluoxetine on serotonin and dopamine concentration in microdialysis fluid from rat striatum. Life Sci 50:1683–1690

    Article  CAS  PubMed  Google Scholar 

  • Peterson DR, Norris KJ, Thompson JA (1984) A comparative study of the disposition of nicotine and its metabolites in three inbred strains of mice. Drug Metab Dispos 12:725–731

    Google Scholar 

  • Riah O, Courrière P, Dousset JC, Todeschi N, Labat C (1998) Nicotine is more efficient than cotinine at passing the blood-brain barrier in rats. Cell Mol Neurobiol 18:311–318

    Article  CAS  PubMed  Google Scholar 

  • Rosecrans JA (1972) Brain area nicotine levels in male and female rats with different levels of spontaneous activity. Neuropharmacology 11:863–870

    Article  CAS  PubMed  Google Scholar 

  • Rosecrans JA, Schechter MD (1972) Brain area nicotine levels in male and female rats of two strains. Arch Int Pharmacodyn Ther 196:46–54

    CAS  PubMed  Google Scholar 

  • Schmiterlöw CG, Hansson E, Andersson G (1967) Distribution of nicotine in central nervous system. Ann NY Acad Sci 142:2–14

    Article  Google Scholar 

  • Seidel G (1967) Distribution of pentobarbital, barbital and thiopental under ethanol. Arch Pharmakol Exp Pathol 257:221–229

    Article  CAS  Google Scholar 

  • Siemens AJ, Jatinder M, Khanna JM (1977) Acute metabolic interaction between ethanol and cannabis. Alcohol Clin Exp Res 1:343–348

    Article  CAS  Google Scholar 

  • Sziraki, Lipovac MN, Hashim A, Sershen H, Allen D, Cooper T, Czobor P, Lajtha A (2001) Differences in nicotine-induced dopamine release and nicotine pharmacokinetics between Lewis and Fischer 344 rats. Neurochem Res 26:609–617

    Article  CAS  PubMed  Google Scholar 

  • Yeh J, Barbieri RL, Friedman AJ (1989) Nicotine and cotinine inhibit rat testis androgen biosynthesis in vitro. J Steroid Biochem 33:627–630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance of Joseph A. McClaren and Curtis D. Bard is gratefully acknowledged. This work was supported by NIH-NIAAA grants AA07611, AA019366, and AA020396.

Conflict of interest

The authors declare no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Engleman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katner, S.N., Toalston, J.E., Smoker, M.P. et al. Time-course of extracellular nicotine and cotinine levels in rat brain following administration of nicotine: effects of route and ethanol coadministration. Psychopharmacology 232, 551–560 (2015). https://doi.org/10.1007/s00213-014-3681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3681-4

Keywords

Navigation