Skip to main content
Log in

The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, thereby curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence antidepressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram’s inhibition hereof.

Objectives

Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram.

Methods

Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying).

Results

We generated mice expressing either the wild-type human SERT (hSERTWT) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERTALI/VFL+SI/TT). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration.

Conclusions

We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aan Het Rot M, Zarate CA Jr, Charney DS, Mathew SJ (2012) Ketamine for depression: where do we go from here? Biol Psychiatry 72:537–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Artigas F, Romero L, de Montigny C, Blier P (1996) Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19:378–383

    Article  CAS  PubMed  Google Scholar 

  • Barker EL, Kimmel HL, Blakely RD (1994) Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands. Mol Pharmacol 46:799–807

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, Gainetdinov RR, Caron MG (2008) Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A 105:1333–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T (2008) A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1 antagonist) in the treatment of major depression. Am J Psychiatry 165:617–620

    Article  PubMed  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT Jr, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  CAS  PubMed  Google Scholar 

  • Blier P (2003) The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13:57–66

    Article  CAS  PubMed  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology 163:121–141

    Article  CAS  PubMed  Google Scholar 

  • Brosen K, Naranjo CA (2001) Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol 11:275–283

    Article  CAS  PubMed  Google Scholar 

  • Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860

    CAS  PubMed  Google Scholar 

  • Cervo L, Canetta A, Calcagno E, Burbassi S, Sacchetti G, Caccia S, Fracasso C, Albani D, Forloni G, Invernizzi RW (2005) Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J Neurosci 25:8165–8172

    Article  CAS  PubMed  Google Scholar 

  • Chang AS, Chang SM, Starnes DM, Schroeter S, Bauman AL, Blakely RD (1996) Cloning and expression of the mouse serotonin transporter. Brain Res Mol Brain Res 43:185–192

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Larsen MB, Sanchez C, Wiborg O (2005) The S-enantiomer of R, S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. Eur Neuropsychopharmacol 15:193–198

    Article  CAS  PubMed  Google Scholar 

  • Colonna L, Andersen HF, Reines EH (2005) A randomized, double-blind, 24-week study of escitalopram (10 mg/day) versus citalopram (20 mg/day) in primary care patients with major depressive disorder. Curr Med Res Opin 21:1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Cristalli G, Lambertucci C, Marucci G, Volpini R, Dal Ben D (2008) A2A adenosine receptor and its modulators: overview on a druggable GPCR and on structure–activity relationship analysis and binding requirements of agonists and antagonists. Curr Pharm Des 14:1525–1552

    Article  CAS  PubMed  Google Scholar 

  • Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology 183:257–264

    Article  CAS  PubMed  Google Scholar 

  • Cryan JF, O'Leary OF, Jin SH, Friedland JC, Ouyang M, Hirsch BR, Page ME, Dalvi A, Thomas SA, Lucki I (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci U S A 101:8186–8191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  CAS  PubMed  Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 166:373–382

    CAS  PubMed  Google Scholar 

  • de Bodinat C, Guardiola-Lemaitre B, Mocaer E, Renard P, Munoz C, Millan MJ (2010) Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 9:628–642

    Article  PubMed  Google Scholar 

  • Deacon RM (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1:122–124

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Jones EG (1988) A light and electron microscopic study of serotonin-immunoreactive fibers and terminals in the monkey sensory-motor cortex. Exp Brain Res 71:171–182

    Article  CAS  PubMed  Google Scholar 

  • Descarries L, Riad M (2012) Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT. Philos Trans R Soc Lond B Biol Sci 367:2416–2425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Descarries L, Audet MA, Doucet G, Garcia S, Oleskevich S, Seguela P, Soghomonian JJ, Watkins KC (1990) Morphology of central serotonin neurons. Brief review of quantified aspects of their distribution and ultrastructural relationships. Ann N Y Acad Sci 600:81–92

    Article  CAS  PubMed  Google Scholar 

  • Eyding D, Lelgemann M, Grouven U, Harter M, Kromp M, Kaiser T, Kerekes MF, Gerken M, Wieseler B (2010) Reboxetine for acute treatment of major depression: systematic review and meta-analysis of published and unpublished placebo and selective serotonin reuptake inhibitor controlled trials. BMJ 341:c4737

    Article  PubMed Central  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, Gupta S, Miczek KA (2004) Anxiolytic-like effects of escitalopram, citalopram, and R-citalopram in maternally separated mouse pups. J Pharmacol Exp Ther 308:474–480

    Article  CAS  PubMed  Google Scholar 

  • Fox MA, Jensen CL, French HT, Stein AR, Huang SJ, Tolliver TJ, Murphy DL (2008) Neurochemical, behavioral, and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice. Psychopharmacology 201:203–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin K, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Gibbons RD, Hur K, Brown CH, Davis JM, Mann JJ (2012) Benefits from antidepressants: synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine. Arch Gen Psychiatry 69:572–579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gitter BD, Waters DC, Bruns RF, Mason NR, Nixon JA, Howbert JJ (1991) Species differences in affinities of non-peptide antagonists for substance P receptors. Eur J Pharmacol 197:237–238

    Article  CAS  PubMed  Google Scholar 

  • Griebel G, Beeske S, Stahl SM (2012) The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry 73:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Goodwin GM, Cowen PJ (2009) Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 195:102–108

    Article  PubMed  Google Scholar 

  • Hirano K, Kimura R, Sugimoto Y, Yamada J, Uchida S, Kato Y, Hashimoto H, Yamada S (2005) Relationship between brain serotonin transporter binding, plasma concentration and behavioural effect of selective serotonin reuptake inhibitors. Br J Pharmacol 144:695–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hjorth S, Westlin D, Bengtsson HJ (1997) WAY100635-induced augmentation of the 5-HT-elevating action of citalopram: relative importance of the dose of the 5-HT1A (auto)receptor blocker versus that of the 5-HT reuptake inhibitor. Neuropharmacology 36:461–465

    Article  CAS  PubMed  Google Scholar 

  • Ireland-Denny L, Parihar AS, Miller TR, Kang CH, Krueger KM, Esbenshade TA, Hancock AA (2001) Species-related pharmacological heterogeneity of histamine H(3) receptors. Eur J Pharmacol 433:141–150

    Article  CAS  PubMed  Google Scholar 

  • Iyengar S, Hipskind PA, Gehlert DR, Schober D, Lobb KL, Nixon JA, Helton DR, Kallman MJ, Boucher S, Couture R, Li DL, Simmons RM (1997) LY303870, a centrally active neurokinin-1 antagonist with a long duration of action. J Pharmacol Exp Ther 280:774–785

    CAS  PubMed  Google Scholar 

  • Jacobsen JP, Nielsen EO, Hummel R, Redrobe JP, Mirza N, Weikop P (2008) Insensitivity of NMRI mice to selective serotonin reuptake inhibitors in the tail suspension test can be reversed by co-treatment with 5-hydroxytryptophan. Psychopharmacology 199:137–150

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen JP, Medvedev IO, Caron MG (2012a) The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci 367:2444–2459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen JP, Siesser WB, Sachs BD, Peterson S, Cools MJ, Setola V, Folgering JH, Flik G, Caron MG (2012b) Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry 17:694–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jennings KA, Loder MK, Sheward WJ, Pei Q, Deacon RM, Benson MA, Olverman HJ, Hastie ND, Harmar AJ, Shen S, Sharp T (2006) Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission. J Neurosci 26:8955–8964

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Montgomery S, Ball W, Morrison M, Snavely D, Liu G, Hargreaves R, Hietala J, Lines C, Beebe K, Reines S (2006) Lack of efficacy of the substance p (neurokinin1 receptor) antagonist aprepitant in the treatment of major depressive disorder. Biol Psychiatry 59:216–223

    Article  CAS  PubMed  Google Scholar 

  • Kennedy SH, Andersen HF, Lam RW (2006) Efficacy of escitalopram in the treatment of major depressive disorder compared with conventional selective serotonin reuptake inhibitors and venlafaxine XR: a meta-analysis. J Psychiatry Neurosci 31:122–131

    PubMed Central  PubMed  Google Scholar 

  • Kittler K, Lau T, Schloss P (2010) Antagonists and substrates differentially regulate serotonin transporter cell surface expression in serotonergic neurons. Eur J Pharmacol 629:63–67

    Article  CAS  PubMed  Google Scholar 

  • Klein N, Sacher J, Geiss-Granadia T, Attarbaschi T, Mossaheb N, Lanzenberger R, Potzi C, Holik A, Spindelegger C, Asenbaum S, Dudczak R, Tauscher J, Kasper S (2006) In vivo imaging of serotonin transporter occupancy by means of SPECT and [123I]ADAM in healthy subjects administered different doses of escitalopram or citalopram. Psychopharmacology 188:263–272

    Article  CAS  PubMed  Google Scholar 

  • Klein N, Sacher J, Geiss-Granadia T, Mossaheb N, Attarbaschi T, Lanzenberger R, Spindelegger C, Holik A, Asenbaum S, Dudczak R, Tauscher J, Kasper S (2007) Higher serotonin transporter occupancy after multiple dose administration of escitalopram compared to citalopram: an [123I]ADAM SPECT study. Psychopharmacology 191:333–339

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Hayashi E, Shimamura M, Kinoshita M, Murphy NP (2008) Neurochemical responses to antidepressants in the prefrontal cortex of mice and their efficacy in preclinical models of anxiety-like and depression-like behavior: a comparative and correlational study. Psychopharmacology 197:567–580

    Article  CAS  PubMed  Google Scholar 

  • Kreilgaard M, Smith DG, Brennum LT, Sanchez C (2008) Prediction of clinical response based on pharmacokinetic/pharmacodynamic models of 5-hydroxytryptamine reuptake inhibitors in mice. Br J Pharmacol 155:276–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leffler A, Ahlstedt I, Engberg S, Svensson A, Billger M, Oberg L, Bjursell MK, Lindstrom E, von Mentzer B (2009) Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3. Biochem Pharmacol 77:1522–1530

    Article  CAS  PubMed  Google Scholar 

  • Lepola UM, Loft H, Reines EH (2003) Escitalopram (10–20 mg/day) is effective and well tolerated in a placebo-controlled study in depression in primary care. Int Clin Psychopharmacol 18:211–217

    Article  PubMed  Google Scholar 

  • Lepola U, Wade A, Andersen HF (2004) Do equivalent doses of escitalopram and citalopram have similar efficacy? A pooled analysis of two positive placebo-controlled studies in major depressive disorder. Int Clin Psychopharmacol 19:149–155

    Article  PubMed  Google Scholar 

  • Llorca PM, Azorin JM, Despiegel N, Verpillat P (2005) Efficacy of escitalopram in patients with severe depression: a pooled analysis. Int J Clin Pract 59:268–275

    Article  CAS  PubMed  Google Scholar 

  • Lucas G, Rymar VV, Sadikot AF, Debonnel G (2008) Further evidence for an antidepressant potential of the selective sigma1 agonist SA 4503: electrophysiological, morphological and behavioural studies. Int J Neuropsychopharmacol 11:485–495

    Article  CAS  PubMed  Google Scholar 

  • Lundberg J, Christophersen JS, Petersen KB, Loft H, Halldin C, Farde L (2007) PET measurement of serotonin transporter occupancy: a comparison of escitalopram and citalopram. Int J Neuropsychopharmacol 10:777–785

    Article  CAS  PubMed  Google Scholar 

  • Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, Durroux T, Mouillac B, Corbani M, Guillon G (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24:609–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mansari ME, Wiborg O, Mnie-Filali O, Benturquia N, Sanchez C, Haddjeri N (2007) Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. Int J Neuropsychopharmacol 10:31–40

    Article  PubMed  Google Scholar 

  • Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S, Hussey D, Carella A, Potter WZ, Ginovart N, Spencer EP, Cheok A, Houle S (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

    Article  PubMed  Google Scholar 

  • Michelson D, Adler LA, Amsterdam JD, Dunner DL, Nierenberg AA, Reimherr FW, Schatzberg AF, Kelsey DK, Williams DW (2007) Addition of atomoxetine for depression incompletely responsive to sertraline: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 68:582–587

    Article  CAS  PubMed  Google Scholar 

  • Moore N, Verdoux H, Fantino B (2005) Prospective, multicentre, randomized, double-blind study of the efficacy of escitalopram versus citalopram in outpatient treatment of major depressive disorder. Int Clin Psychopharmacol 20:131–137

    Article  PubMed  Google Scholar 

  • Mork A, Kreilgaard M, Sanchez C (2003) The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats. Neuropharmacology 45:167–173

    Article  CAS  PubMed  Google Scholar 

  • Neubauer HA, Hansen CG, Wiborg O (2006) Dissection of an allosteric mechanism on the serotonin transporter: a cross-species study. Mol Pharmacol 69:1242–1250

    Article  CAS  PubMed  Google Scholar 

  • Neurocrine (2013) Corticotropin-releasing factor (CRF) antagonist. http://phx.corporate-ir.net/phoenix.zhtml?c=68817&p=irol-newsArticle&ID=1471129&highlight=. Accessed 5 May 2014

  • Nguyen HT, Guiard BP, Bacq A, David DJ, David I, Quesseveur G, Gautron S, Sanchez C, Gardier AM (2012) Blockade of the high-affinity norepinephrine transporter (NET) by the selective serotonin reuptake inhibitor escitalopram: an in vivo microdialysis study in mice. Br J Pharmacol 168:103–16

  • Nikisch G, Mathe AA, Czernik A, Thiele J, Bohner J, Eap CB, Agren H, Baumann P (2005) Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response. Psychopharmacology 181:751–760

    Article  CAS  PubMed  Google Scholar 

  • Njung'e K, Handley SL (1991) Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. Br J Pharmacol 104:105–112

    Article  PubMed Central  PubMed  Google Scholar 

  • Owens MJ, Knight DL, Nemeroff CB (2001) Second-generation SSRIs: human monoamine transporter binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50:345–350

  • Plenge P, Mellerup ET, Laursen H (1990) Regional distribution of the serotonin transport complex in human brain, identified with 3H-paroxetine, 3H-citalopram and 3H-imipramine. Prog Neuro-Psychopharmacol Biol Psychiatry 14:61–72

    Article  CAS  Google Scholar 

  • Plenge P, Gether U, Rasmussen SG (2007) Allosteric effects of R- and S-citalopram on the human 5-HT transporter: evidence for distinct high- and low-affinity binding sites. Eur J Pharmacol 567:1–9

    Article  CAS  PubMed  Google Scholar 

  • Plenge P, Shi L, Beuming T, Te J, Newman AH, Weinstein H, Gether U, Loland CJ (2012) Steric hindrance mutagenesis in the conserved extracellular vestibule impedes allosteric binding of antidepressants to the serotonin transporter. J Biol Chem 287:39316–39326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preti A (2002) Tomoxetine (Eli Lilly & Co). Curr Opin Investig Drugs 3:272–277

    CAS  PubMed  Google Scholar 

  • PsychCentral (2009) PsychCentral. http://psychcentral.com/lib/top-25-psychiatric-prescriptions-for-2009/0003170. Accessed 5 May 2014

  • Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285:763–766

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Shippenberg TS, Jayanthi LD (2011) Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacol Ther 129:220–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rao N (2007) The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet 46:281–290

    Article  CAS  PubMed  Google Scholar 

  • Rossi DV, Burke TF, Hensler JG (2008a) Differential regulation of serotonin-1A receptor-stimulated [35S]GTP gamma S binding in the dorsal raphe nucleus by citalopram and escitalopram. Eur J Pharmacol 583:103–107

    Article  CAS  PubMed  Google Scholar 

  • Rossi DV, Burke TF, McCasland M, Hensler JG (2008b) Serotonin-1A receptor function in the dorsal raphe nucleus following chronic administration of the selective serotonin reuptake inhibitor sertraline. J Neurochem 105:1091–1099

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C (2006) The pharmacology of citalopram enantiomers: the antagonism by R-citalopram on the effect of S-citalopram. Basic Clin Pharmacol Toxicol 99:91–95

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Kreilgaard M (2004) R-citalopram inhibits functional and 5-HTP-evoked behavioural responses to the SSRI, escitalopram. Pharmacol Biochem Behav 77:391–398

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, Larsen A, Wiborg O (2003a) Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology 167:353–362

    CAS  PubMed  Google Scholar 

  • Sanchez C, Gruca P, Papp M (2003b) R-citalopram counteracts the antidepressant-like effect of escitalopram in a rat chronic mild stress model. Behav Pharmacol 14:465–470

    CAS  PubMed  Google Scholar 

  • Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH (2008) Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 3:e3301

    Article  PubMed Central  PubMed  Google Scholar 

  • Sidhu J, Priskorn M, Poulsen M, Segonzac A, Grollier G, Larsen F (1997) Steady-state pharmacokinetics of the enantiomers of citalopram and its metabolites in humans. Chirality 9:686–692

    Article  CAS  PubMed  Google Scholar 

  • Stahl SM, Lee-Zimmerman C, Cartwright S, Morrissette DA (2013) Serotonergic drugs for depression and beyond. Curr Drug Targets 14:578–585

    Article  CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  CAS  PubMed  Google Scholar 

  • Storustovu S, Sanchez C, Porzgen P, Brennum LT, Larsen AK, Pulis M, Ebert B (2004) R-citalopram functionally antagonises escitalopram in vivo and in vitro: evidence for kinetic interaction at the serotonin transporter. Br J Pharmacol 142:172–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sur C, Betz H, Schloss P (1997) A single serine residue controls the cation dependence of substrate transport by the rat serotonin transporter. Proc Natl Acad Sci U S A 94:7639–7644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thase ME (2006) Depression and sleep: pathophysiology and treatment. Dialogues Clin Neurosci 8:217–226

    PubMed Central  PubMed  Google Scholar 

  • Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD (2011) Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Proc Natl Acad Sci U S A 108:3785–3790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yevtushenko VY, Belous AI, Yevtushenko YG, Gusinin SE, Buzik OJ, Agibalova TV (2007) Efficacy and tolerability of escitalopram versus citalopram in major depressive disorder: a 6-week, multicenter, prospective, randomized, double-blind, active-controlled study in adult outpatients. Clin Ther 29:2319–2332

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Hansen KB, Boyle NJ, Han K, Muske G, Huang X, Egebjerg J, Sanchez C (2009) An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: kinetic binding studies with the ALI/VFL-SI/TT mutant. Neurosci Lett 462:207–212

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Haddjeri N, Sanchez C (2011) Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter—a review of current understanding of its mechanism of action. Psychopharmacology 219:1-13

Download references

Acknowledgements

This study was supported in part by H. Lundbeck A/S via an investigator-initiated Sponsored Research Agreement with Duke University. BDS was the recipient of a Minority Supplement award from the National Institutes of Health (MH79201-03S1) and is currently the recipient of an NRSA postdoctoral fellowship (F32-MH093092). JPRJ is the grateful recipient of an individual grant from The Lundbeck Foundation of Denmark. The authors are grateful to Dr. Hans Petersen for performing chiral analysis of es- and R-citalopram

Conflict of interest

ALP, MC and CS are employees of Lundbeck Research, USA. MGC has consulted for Lundbeck and received compensation. Remaining authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc G. Caron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(JPEG 316 kb)

ESM 1

(DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobsen, J.P.R., Plenge, P., Sachs, B.D. et al. The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology 231, 4527–4540 (2014). https://doi.org/10.1007/s00213-014-3595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3595-1

Keywords

Navigation