Skip to main content
Log in

Insensitivity of NMRI mice to selective serotonin reuptake inhibitors in the tail suspension test can be reversed by co-treatment with 5-hydroxytryptophan

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Exploring differences between mouse strains in drug effects in models of antidepressant-like activity may provide clues to the neurobiology of antidepressant responses.

Objectives

The objective of this study was to explore whether insensitivity to selective serotonin reuptake inhibitors (SSRIs) in NMRI mice in the tail suspension test can be related to 5-hydroxytryptamine (5-HT) function.

Materials and methods

We compared NMRI and C57Bl/6 mice, a SSRI-sensitive strain, in the tail suspension test following citalopram, paroxetine, or fluoxetine and determined 5-HT transporter (5-HTT) densities, 5-HT tissue and extracellular levels, 5-HT synthesis, tryptophan hydroxylase 2 (TPH2) genotypes and hypothermia induced by the 5-HT1A agonist 8-OH-DPAT. In NMRI mice, we tested if co-treatment with 5-HTP would increase 5-HT levels and confer SSRI sensitivity in the tail suspension test.

Results

C57Bl/6, but not NMRI, mice responded to SSRIs in the tail suspension test. 5-HTT densities in the frontal cortex and hippocampus were similar between the strains. NMRI mice had lower tissue 5-HT levels in these regions and decreased extracellular 5-HT in the frontal cortex at baseline and following citalopram. C57Bl/6 mice were more sensitive to 8-OH-DPAT-induced hypothermia. Both strains had the 1473C TPH2 genotype and similar 5-HT synthesis. In NMRI mice, 5-HTP co-treatment restored the tail suspension and extracellular 5-HT responses to SSRIs to levels equivalent to those seen in C57Bl/6 mice.

Conclusion

Low 5-HT function in NMRI mice may account for their insensitivity to SSRIs in the tail suspension test. As the tail suspension test is a predictor of clinical efficacy, the current data suggest that 5-HTP adjunct treatment may benefit SSRI treatment refractory patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine

5-HTT:

5-HT transporter

5-HTP:

5-hydroxytryptophan

SSRI:

selective serotonin reuptake-inhibitor

SNP:

single nucleotide polymorphism

TPH2:

tryptophan hydroxylase 2

NET:

norepinephrine transporter

two-way RM-ANOVA:

two-way repeated measures ANOVA

Reference

  • Artaiz I, Zazpe A, Del RJ (1998) Characterization of serotonergic mechanisms involved in the behavioural inhibition induced by 5-hydroxytryptophan in a modified light-dark test in mice. Behav Pharmacol 9:103–112

    PubMed  CAS  Google Scholar 

  • Bortolozzi A, margos-Bosch M, Toth M, Artigas F, Adell A (2004) In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem 88:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Brocco M, Dekeyne A, Veiga S, Girardon S, Millan MJ (2002) Induction of hyperlocomotion in mice exposed to a novel environment by inhibition of serotonin reuptake. A pharmacological characterization of diverse classes of antidepressant agents. Pharmacol Biochem Behav 71:667–680

    Article  PubMed  CAS  Google Scholar 

  • Cervo L, Canetta A, Calcagno E, Burbassi S, Sacchetti G, Caccia S, Fracasso C, Albani D, Forloni G, Invernizzi RW (2005) Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J Neurosci 25:8165–8172

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183:257–264

    Article  CAS  Google Scholar 

  • Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7

    Article  PubMed  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • Das YT, Bagchi M, Bagchi D, Preuss HG (2004) Safety of 5-hydroxy-l-tryptophan. Toxicol Lett 150:111–122

    Article  PubMed  CAS  Google Scholar 

  • Delgado PL (2000) Depression: the case for a monoamine deficiency. J Clin Psychiatry 61(Suppl 6):7–11

    PubMed  CAS  Google Scholar 

  • Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53:649–659

    Article  PubMed  Google Scholar 

  • Ferrari PF, Palanza P, Parmigiani S, de Almeida RM, Miczek KA (2005) Serotonin and aggressive behavior in rodents and nonhuman primates: predispositions and plasticity. Eur J Pharmacol 526:259–273

    Article  PubMed  CAS  Google Scholar 

  • Fukui M, Rodriguiz RM, Zhou J, Jiang SX, Phillips LE, Caron MG, Wetsel WC (2007) Vmat2 heterozygous mutant mice display a depressive-like phenotype. J Neurosci 27:10520–10529

    Article  PubMed  CAS  Google Scholar 

  • Gillman PK (2007) Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol 151:737–748

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR (1985) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology 24:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JP, Rodriguiz RM, Mork A, Wetsel WC (2005) Monoaminergic dysregulation in glutathione-deficient mice: possible relevance to schizophrenia? Neuroscience 132:1055–1072

    Article  PubMed  CAS  Google Scholar 

  • Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12:522–543

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Paquette V, Gravel P, Rosa-Neto P, Weston F, Diksic M, Benkelfat C (2006) alpha-[11C]Methyl-l-tryptophan trapping in the orbital and ventral medial prefrontal cortex of suicide attempters. Eur Neuropsychopharmacol 16:220–223

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    Article  CAS  Google Scholar 

  • Mirza NR, Nielsen EO, Troelsen KB (2007) Serotonin transporter density and anxiolytic-like effects of antidepressants in mice. Prog Neuropsychopharmacol Biol Psychiatry 31:858–866

    Article  PubMed  CAS  Google Scholar 

  • Moreno FA, Gelenberg AJ, Heninger GR, Potter RL, McKnight KM, Allen J, Phillips AP, Delgado PL (1999) Tryptophan depletion and depressive vulnerability. Biol Psychiatry 46:498–505

    Article  PubMed  CAS  Google Scholar 

  • Moreno FA, Rowe DC, Kaiser B, Chase D, Michaels T, Gelernter J, Delgado PL (2002) Association between a serotonin transporter promoter region polymorphism and mood response during tryptophan depletion. Mol Psychiatry 7:213–216

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, De SR, Iannuccelli M, Borghesi R, Battistini N (1983) Treatment of depression with L-5-hydroxytryptophan combined with chlorimipramine, a double-blind study. Int J Clin Pharmacol Res 3:239–250

    PubMed  CAS  Google Scholar 

  • O'Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 192:357–371

    Article  CAS  Google Scholar 

  • Olivier B, Zethof T, Pattij T, van BM, van OR, Leahy C, Oosting R, Bouwknecht A, Veening J, van der GJ, Groenink L (2003) Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 463:117–132

    Article  PubMed  CAS  Google Scholar 

  • Pare CM, Yeung DP, Price K, Stacey RS (1969) 5-Hydroxytryptamine, noradrenaline, and dopamine in brainstem, hypothalamus, and caudate nucleus of controls and of patients committing suicide by coal-gas poisoning. Lancet 2:133–135

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KB (2004) The mouse brain in stereotaxic coordinates: compact second edition. Academic, San Diego

    Google Scholar 

  • Perry KW, Fuller RW (1993) Extracellular 5-hydroxytryptamine concentration in rat hypothalamus after administration of fluoxetine plus l-5-hydroxytryptophan. J Pharm Pharmacol 45:759–761

    PubMed  CAS  Google Scholar 

  • Plenge P, Mellerup ET (1991) [3H]citalopram binding to brain and platelet membranes of human and rat. J Neurochem 56:248–252

    Article  PubMed  CAS  Google Scholar 

  • Ripoll N, David DJ, Dailly E, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193–200

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, Nakai A, Debonnel G, Blier P, Benkelfat C (2004) Measurement of brain regional alpha-[11C]methyl-l-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry 61:556–563

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Bergqvist PB, Brennum LT, Gupta S, Hogg S, Larsen A, Wiborg O (2003) Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 167:353–362

    CAS  Google Scholar 

  • Shaw DM, Camps FE, Eccleston EG (1967) 5-Hydroxytryptamine in the hind-brain of depressive suicides. Br J Psychiatry 113:1407–1411

    Article  PubMed  CAS  Google Scholar 

  • Shaw K, Turner J, Del MC (2002) Tryptophan and 5-hydroxytryptophan for depression. Cochrane Database Syst RevCD003198

  • Steru L, Chermat R, Thierry B, Mico JA, Lenegre A, Steru M, Simon P, Porsolt RD (1987) The automated tail suspension test: a computerized device which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 11:659–671

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  • Tejani-Butt SM (1992) [3H]nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    PubMed  CAS  Google Scholar 

  • Troelsen KB, Nielsen EO, Mirza NR (2005) Chronic treatment with duloxetine is necessary for an anxiolytic-like response in the mouse zero maze: the role of the serotonin transporter. Psychopharmacology (Berl) 181:741–750

    Article  CAS  Google Scholar 

  • Turner EH, Loftis JM, Blackwell AD (2006) Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Ther 109:325–338

    Article  PubMed  CAS  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    Article  PubMed  CAS  Google Scholar 

  • Westenberg HG, Gerritsen TW, Meijer BA, van Praag HM (1982) Kinetics of l-5-hydroxytryptophan in healthy subjects. Psychiatry Res 7:373–385

    Article  PubMed  CAS  Google Scholar 

  • Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ (2002) Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 7:1115–1119

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, Schwartz DA, Krishnan KR, Caron MG (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jeanette DeWitt Brodersen and Anne Birgitte Fischer for skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob P. R. Jacobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, J.P.R., Nielsen, E.Ø., Hummel, R. et al. Insensitivity of NMRI mice to selective serotonin reuptake inhibitors in the tail suspension test can be reversed by co-treatment with 5-hydroxytryptophan. Psychopharmacology 199, 137–150 (2008). https://doi.org/10.1007/s00213-008-1142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1142-7

Keywords

Navigation