Skip to main content

Advertisement

Log in

Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methylone, a new drug of abuse sold as “bath salts,” has similar effects to ecstasy or cocaine.

Objective

We have investigated changes in dopaminergic and serotoninergic markers, indicative of neuronal damage induced by methylone in the frontal cortex, hippocampus, and striatum of mice, according to two different treatment schedules.

Methods

Methylone was given subcutaneously to male Swiss CD1 mice at an ambient temperature of 26 °C. Treatment A consisted of three doses of 25 mg/kg at 3.5-h intervals between doses for two consecutive days, and treatment B consisted of four doses of 25 mg/kg at 3-h intervals in 1 day.

Results

Repeated methylone administration induced hyperthermia and a significant loss in body weight. Following treatment A, methylone induced transient dopaminergic (frontal cortex) and serotoninergic (hippocampus) impairment. Following treatment B, transient dopaminergic (frontal cortex) and serotonergic (frontal cortex and hippocampus) changes 7 days after treatment were found. We found evidence of astrogliosis in the CA1 and the dentate gyrus of the hippocampus following treatment B. The animals also showed an increase in immobility time in the forced swim test, pointing to a depressive-like behavior. In cultured cortical neurons, methylone (for 24 and 48 h) did not induce a remarkable cytotoxic effect.

Conclusions

The neural effects of methylone differ depending upon the treatment schedule. Neurochemical changes elicited by methylone are apparent when administered at an elevated ambient temperature, four times per day at 3-h intervals, which is in accordance with its short half-life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Battaglia G, Yeh SY, De Souza EB (1988) MDMA-induced neurotoxicity: parameters of degeneration and recovery of brain serotonin neurons. Pharmacol Biochem Behav 29:269–274

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann MH, Partilla JS, Lehner KR (2013) Psychoactive "bath salts": not so soothing. Eur J Pharmacol 698:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borek HA, Holstege CP (2012) Hyperthermia and multiorgan failure after abuse of "bath salts" containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 60:103–105

    Article  PubMed  Google Scholar 

  • Bossong MG, Van Dijk JP, Niesink RJ (2005) Methylone and mCPP, two new drugs of abuse? Addict Biol 10:321–323

    Article  CAS  PubMed  Google Scholar 

  • Boulanger-Gobeil C, St-Onge M, Laliberté M, Auger PL (2012) Seizures and hyponatremia related to ethcathinone and methylone poisoning. J Med Toxicol 8:59–61

    Article  PubMed Central  PubMed  Google Scholar 

  • Brandt SD, Sumnall HR, Measham F, Cole J (2010) Analyses of second generation “legal highs” in the UK: initial findings. Drug Test Anal 2:377–382

    Article  CAS  PubMed  Google Scholar 

  • Brunt TM, Poortman A, Niesink RJ, Van den Brink W (2011) Instability of the ecstasy market and a new kid on the block: mephedrone. J Psychopharmacol 25:1543–1547

    Article  CAS  PubMed  Google Scholar 

  • Calapai G, Crupi A, Firenzuoli F, Inferrera G, Squadrito F, Parisi A, De Sarro G, Caputi A (2001) Serotonin, norepinephrine and dopamine involvement in the antidepressant action of hypericum perforatum. Pharmacopsychiatry 34:45–49

    Article  CAS  PubMed  Google Scholar 

  • Capela JP, Meisel A, Abreu AR, Branco PS, Ferreira LM, Lobo AM, Remião F, Bastos ML, Carvalho F (2006) Neurotoxicity of Ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. J Pharmacol Exp Ther 316:53–61

    Article  CAS  PubMed  Google Scholar 

  • Cawrse BM, Levine B, Jufer RA, Fowler DR, Vorce SP, Dickson AJ, Holler JM (2012) Distribution of methylone in four postmortem cases. J Anal Toxicol 36:434–439

    Article  CAS  PubMed  Google Scholar 

  • Chipana C, Camarasa J, Pubill D, Escubedo E (2006) Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors. Neuropharmacology 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Cozzi NV, Sievert MK, Shulgin AT, Jacob P, Ruoho AE (1999) Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol 381:63–69

    Article  CAS  PubMed  Google Scholar 

  • den Hollander B, Rozov S, Linden AM, Uusi-Oukari M, Ojanperä I, Korpi ER (2013) Long-term cognitive and neurochemical effects of "bath salt" designer drugs methylone and mephedrone. Pharmacol Biochem Behav 103:501–509

    Article  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36

    Article  CAS  PubMed  Google Scholar 

  • Escubedo E, Chipana C, Pérez-Sanchez M, Camarasa J, Pubill D (2005) Methyllycaconitine prevents methamphetamine-induced effects in mouse striatum: involvement of alpha7 nicotinic receptors. J Pharmacol Exp Ther 315:658–667

    Article  CAS  PubMed  Google Scholar 

  • Eshleman AJ, Wofrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fantigrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH (2003) Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine ("ecstasy") and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacology (Berl) 166:202–211

    Google Scholar 

  • Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration Center for Drug Evaluation and Research (CDER) (2005) Guidance for industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. http://www.fda.gov/cder/guidance/index.htm. Last accessed May 14, 2013.

  • Granado N, Escobedo I, O’Shea E, Colado I, Moratalla R (2008) Early loss of dopaminergic terminals in striosomes after MDMA administration to mice. Synapse 62:80–84

    Article  CAS  PubMed  Google Scholar 

  • Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339:530–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  CAS  PubMed  Google Scholar 

  • Karila L, Reynaud M (2010) GHB and synthetic cathinones: clinical effects and potential consequences. Drug Test Anal 3:552–559

    Article  PubMed  Google Scholar 

  • Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared to MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and serotonin levels in nucleus accumbens of awake rats. Br J Pharmacol 164:1949–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Logan BJ, Laverty R, Sanderson WD, Yee YB (1988) Differences between rats and mice in MDMA (methylenedioxymethylamphetamine) neurotoxicity. Eur J Pharmacol 152:227–234

    Article  CAS  PubMed  Google Scholar 

  • López-Arnau R, Martínez-Clemente J, Pubill D, Escubedo E, Camarasa J (2012) Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol 167:407–420

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Arnau R, Martínez-Clemente J, Carbó M, Pubill D, Escubedo E, Camarasa J (2013) An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as "bath salts". Prog Neuropsychopharmacol Biol Psychiatry 45:64–72

    Article  PubMed  Google Scholar 

  • Martínez-Clemente J, Escubedo E, Pubill D, Camarasa J (2012) Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmacol 22:231–236

    Article  PubMed  Google Scholar 

  • McElrath K, O’Neill C (2011) Experiences with mephedrone pre- and post-legislative control: perceptions of safety and sources of supply. Int J Drug Policy 22:120–127

    Article  PubMed  Google Scholar 

  • McGregor IS, Gurtman CG, Morley KC, Clemens KJ, Blokland A, Li KM, Cornish JL, Hunt GE (2003) Increased anxiety and "depressive" symptoms months after MDMA ("ecstasy") in rats: drug-induced hyperthermia does not predict long-term outcomes. Psychopharmacology (Berl) 168:465–474

    Article  CAS  Google Scholar 

  • Motbey CP, Hunt GE, Bowen MT, Artiss S, McGregor IS (2011) Mephedrone (4-methylmethcathinone, 'meow'), acute behavioural effects and distribution of Fos expression in adolescent rats. Addict Biol 7:409–422

    Google Scholar 

  • Mueller M, Maldonado-Adrian C, Yuan J, McCann UD, Ricaurte GA (2013) Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile. J Pharmacol Exp Ther 344:479–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagai F, Nonaka R, Satoh HKK (2007) The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur J Pharmacol 559:132–137

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T, Tayama S, Ishii H, Ogata A (2009) Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes. Arch Toxicol 83:69–80

    Article  CAS  PubMed  Google Scholar 

  • Pearson JM, Hargraves TL, Hair KLS, Massucci CJ, Frazee CC, Garg U, Pietak BR (2012) Three fatal intoxications due to methylone. J Anal Toxicol 36:444–451

    Article  CAS  PubMed  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:245–255

    Article  CAS  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Pu C, Vorhees CV (1993) Developmental dissociation of methamphetamine-induced depletion of dopaminergic terminals and astrocyte reaction in rat striatum. Brain Res Dev Brain Res 72:325–328

    Article  CAS  PubMed  Google Scholar 

  • Sánchez V, Camarero J, O’Shea E, Green AR, Colado MI (2003) Differential effect of dietary selenium on the long-term neurotoxicity induced by MDMA in mice and rats. Neuropharmacology 44:449–461

    Article  PubMed  Google Scholar 

  • Sánchez V, O'Shea E, Saadat KS, Elliott JM, Colado MI, Green AR (2004) Effect of repeated ('binge') dosing of MDMA to rats housed at normal and high temperature on neurotoxic damage to cerebral 5-HT and dopamine neurons. J Psychopharmacol (Berl) 18:412–416

    Article  Google Scholar 

  • Scheffel U, Lever JR, Stathis M, Ricaurte GA (1992) Repeated administration of MDMA causes transient down-regulation of serotonin 5-HT2 receptors. Neuropharmacology 31:881–893

    Article  CAS  PubMed  Google Scholar 

  • Senn C, Bücheli A, Schaub M, Stohler R (2007) Club drugs. Ther Umsch 64:109–113

    Article  PubMed  Google Scholar 

  • Shimizu E, Watanabe H, Kojima T, Hagiwara H, Fujisaki M, Miyatake R, Hashimoto K, Iyo M (2007) Combined intoxication with methylone and 5-MeO-MIPT. Prog Neuropsychopharmacol Biol Psychiatry 31:288–291

    Article  CAS  PubMed  Google Scholar 

  • Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboz S, Hoener MC, Liechti ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sogawa C, Sogawa N, Ohyama K, Kikura-Hanajiri R, Goda Y, Sora I, Kitayama S (2011) Methylone and monoamine transporters: correlation with toxicity. Curr Neuropharmacol 9:58–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge C. Roberts for language revision of the manuscript. This study was supported by grants from the Plan Nacional sobre Drogas (2010/005 and 2012/102), the Ministerio de Ciencia e Innovación (SAF2010-15948), and the Generalitat de Catalunya (SGR977). López-Arnau is a recipient of a fellowship from Generalitat de Catalunya. Martínez-Clemente is a recipient of a fellowship from the Plan Nacional sobre Drogas, and Abad is a recipient of a fellowship from IBUB.

Conflict of interest

The authors declare that they have no financial or commercial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Camarasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Arnau, R., Martínez-Clemente, J., Abad, S. et al. Repeated doses of methylone, a new drug of abuse, induce changes in serotonin and dopamine systems in the mouse. Psychopharmacology 231, 3119–3129 (2014). https://doi.org/10.1007/s00213-014-3493-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-014-3493-6

Keywords

Navigation