Skip to main content
Log in

A multipoint stress-flux mixed finite element method for the Stokes-Biot model

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of stresses, and the Beavers-Joseph-Saffman law. We apply dual-mixed formulations in both domains, where the symmetry of the Stokes and poroelastic stress tensors is imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. In turn, since the transmission conditions become essential, they are imposed weakly by introducing the traces of the fluid velocity, structure velocity, and the poroelastic media pressure on the interface as the associated Lagrange multipliers. The existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with non-matching grids, together with the corresponding stability bounds. In addition, we develop a new multipoint stress-flux mixed finite element method by involving the vertex quadrature rule, which allows for local elimination of the stresses, rotations, and Darcy fluxes. Well-posedness and error analysis with corresponding rates of convergence for the fully-discrete scheme are complemented by several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Almonacid, J.A., Díaz, H.S., Gatica, G.N., Márquez, A.: A fully-mixed finite element method for the Darcy-Forchheimer/Stokes coupled problem. IMA J. Numer. Anal. 40(2), 1454–1502 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambartsumyan, I., Ervin, V.J., Nguyen, T., Yotov, I.: A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM Math. Model. Numer. Anal. 53(6), 1915–1955 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambartsumyan, I., Khattatov, E., Lee, J.J., Yotov, I.: Higher order multipoint flux mixed finite element methods on quadrilaterals and hexahedra. Math. Models Methods Appl. Sci. 29(06), 1037–1077 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambartsumyan, I., Khattatov, E., Nguyen, T., Yotov, I.: Flow and transport in fractured poroelastic media. GEM Int. J. Geomath. 10(1), 1–34 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Ambartsumyan, I., Khattatov, E., Nordbotten, J.M., Yotov, I.: A multipoint stress mixed finite element method for elasticity on simplicial grids. SIAM J. Numer. Anal. 58(1), 630–656 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambartsumyan, I., Khattatov, E., Nordbotten, J.M., Yotov, I.: A multipoint stress mixed finite element method for elasticity on quadrilateral grids. Numer. Methods Partial Differential Equations 37(3), 1886–1915 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambartsumyan, I., Khattatov, E., Yotov, I.: A coupled multipoint stress-multipoint flux mixed finite element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech. Engrg. 372, 113407 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ambartsumyan, I., Khattatov, E., Yotov, I., Zunino, P.: A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math. 140(2), 513–553 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math. 1(2), 347–367 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arnold, D.N., Falk, R.S., Winter, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76(260), 1699–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Awanou, G.: Rectangular mixed elements for elasticity with weakly imposed symmetry condition. Adv. Comput. Math. 38(2), 351–367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Badia, S., Quaini, A., Quarteroni, A.: Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228(21), 7986–8014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bergkamp, E.A., Verhoosel, C.V., Remmers, J.J.C., Smeulders, D.M.J.: A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance. Comput. Geosci. 24(4), 1497–1522 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  16. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions, and applications, volume 1939 of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence (2008)

    Google Scholar 

  17. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  20. Brezzi, F., Fortin, M., Marini, L.D.: Error analysis of piecewise constant pressure approximations of Darcy’s law. Comput. Methods Appl. Mech. Eng. 195, 1547–1559 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bukac, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Engrg. 292, 138–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bukac, M., Yotov, I., Zunino, P.: An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differential Equations 31(4), 1054–1100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bukac, M., Yotov, I., Zunino, P.: Dimensional model reduction for flow through fractures in poroelastic media. ESAIM Math. Model. Numer. Anal. 51(4), 1429–1471 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Cesmelioglu, A., Chidyagwai, P.: Numerical analysis of the coupling of free fluid with a poroelastic material. Numer. Methods Partial Differential Equations 36(3), 463–494 (2020)

    Article  MathSciNet  Google Scholar 

  25. Cesmelioglu, A., Lee, H., Quaini, A., Wang, K., Yi, S.-Y.: Optimization-based decoupling algorithms for a fluid-poroelastic system. In: Topics in numerical partial differential equations and scientific computing, volume 160 of IMA Vol. Math. Appl., pp. 79–98. Springer, New York (2016)

  26. Cesmelioglu, S.: Analysis of the coupled Navier-Stokes/Biot problem. J. Math. Anal. Appl. 456(2), 970–991 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978)

    Google Scholar 

  28. Cockburn, B., Gopalakrishnan, J., Guzmán, J.: A new elasticity element made for enforcing weak stress symmetry. Math. Comp. 79(271), 1331–1349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Davis, T.: Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software 30(2), 196–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Egger, H., Radu, B.: On a second-order multipoint flux mixed finite element methods on hybrid meshes. SIAM J. on Numer. Anal. 58(3), 1822–1844 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ervin, V.J., Jenkins, E.W., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Farhloul, M., Fortin, M.: Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math. 76(4), 419–440 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014)

    MATH  Google Scholar 

  35. Gatica, G.N., Heuer, N., Meddahi, S.: On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal. 23(2), 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gatica, G.N., Márquez, A., Oyarzúa, R., Rebolledo, R.: Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Engrg. 270, 76–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gatica, G.N., Oyarzúa, R., Sayas, F.J.: Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comp. 80(276), 1911–1948 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gatica, G.N., Oyarzúa, R., Sayas, F.J.: A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA J. Numer. Anal. 32(3), 845–887 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poroelastic medium. Math. Models Methods Appl. Sci. 25(4), 587–645 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Horn, R., Johnson, C.R.: Matrix analysis. Corrected reprint of the 1985 original. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  42. Ingram, R., Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method on hexahedra. SIAM J. Math. Anal. 48(4), 1281–1312 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Meth. Engng. 112(8), 939–962 (2017)

    Article  MathSciNet  Google Scholar 

  44. Khattatov, E., Yotov, I.: Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry. ESAIM Math. Model. Numer. Anal. 53(6), 2081–2108 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Klausen, R.A., Winther, R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104(3), 317–337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kunwar, H., Lee, H., Seelman, K.: Second-order time discretization for a coupled quasi-Newtonian fluid-poroelastic system. Internat. J. Numer. Methods Fluids 92(7), 687–702 (2020)

    Article  MathSciNet  Google Scholar 

  47. Lee, J.J.: Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput. 69(2), 610–632 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lee, J.J.: Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress. Adv. Comput. Math. 42(2), 361–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, T., Yotov, I.: A mixed elasticity formulation for fluid-poroelastic structure interaction. ESAIM Math. Model. Numer. Anal. 56(1), 01–40 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nédélec, J.-C.: A new family of mixed finite elements in \({ R}^3\). Numer. Math. 50(1), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nordbotten, J.M.: Cell-centered finite volume discretizations for deformable porous media. Internat. J. Numer. Methods Engrg. 100(6), 399–418 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nordbotten, J.M.: Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J. Numer. Anal. 53(6), 2605–2625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nordbotten, J.M.: Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal. 54(2), 942–968 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  56. Showalter, R.E.: Poroelastic filtration coupled to Stokes flow. Control theory of partial differential equations. Lect. Notes Pure Appl. Math., vol. 242, pp. 229–241. Chapman & Hall/CRC, Boca Raton, FL (2005)

    Google Scholar 

  57. Showalter, R.E.: Nonlinear degenerate evolution equations in mixed formulations. SIAM J. Math. Anal. 42(5), 2114–2131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wen, J., He, Y.: A strongly conservative finite element method for the coupled Stokes-Biot model. Comput. Math. Appl. 80(5), 1421–1442 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wheeler, M.F., Xue, G., Yotov, I.: A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math. 121(1), 165–204 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yi, S.-Y.: Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differential Equations 30(4), 1189–1210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yi, S.-Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55(4), 1915–1936 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Yotov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sergio Caucao: Supported in part by ANID-Chile through the project PAI77190084 of the PAI Program: Convocatoria Nacional Subvención a la Instalación en la Academia (convocatoria 2019) and Department of Mathematics, University of Pittsburgh.

Tongtong Li and Ivan Yotov: Supported in part by NSF grants DMS 1818775 and DMS 2111129.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caucao, S., Li, T. & Yotov, I. A multipoint stress-flux mixed finite element method for the Stokes-Biot model. Numer. Math. 152, 411–473 (2022). https://doi.org/10.1007/s00211-022-01310-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01310-2

Mathematics Subject Classification

Navigation