Skip to main content
Log in

A convergent finite volume scheme for dissipation driven models with volume filling constraint

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we propose and study an implicit finite volume scheme for a general model which describes the evolution of the composition of a multi-component mixture in a bounded domain. We assume that the whole domain is occupied by the different phases of the mixture which leads to a volume filling constraint. In the continuous model this constraint yields the introduction of a pressure, which should be thought as a Lagrange multiplier for the volume filling constraint. The pressure solves an elliptic equation, to be coupled with parabolic equations, possibly including cross-diffusion terms, which govern the evolution of the mixture composition. Besides the system admits an entropy structure which is at the cornerstone of our analysis. More precisely, the main objective of this work is to design a two-point flux approximation finite volume scheme which preserves the key properties of the continuous model, namely the volume filling constraint and the control of the entropy production. Thanks to these properties, and in particular the discrete entropy-entropy dissipation relation, we are able to prove the existence of solutions to the scheme and its convergence. Finally, we illustrate the behavior of our scheme through different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ait Hammou Oulhaj, A.: Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer. Numer. Methods Partial Differ. Equ. 34, 857–880 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ait Hammou Oulhaj, A., Maltese, D.: Convergence of a positive nonlinear control volume finite element scheme for an anisotropic seawater intrusion model with sharp interfaces. Numer. Methods Partial Differ. Equ. 36(1), 133–153 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ait Hammou Oulhaj, A., Maltese, D.N.: Convergence and long time behavior of a Finite Volume scheme for an isotropic seawater intrusion model with a sharp-diffuse interface in a confined aquifer. Hal-02865698 (2020)

  4. Andreianov, B., Bendahmane, M., Ruiz Baier, R.: Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Models Meth. Appl. Sci. 21, 307–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andreianov, B., Cancès, C., Moussa, A.: A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs. J. Funct. Anal. 273, 3633–3670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bailo, R., Carrillo, J.A., Murakawa, H., Schmidtchen, M.: Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations. Math. Models Methods Appl. Sci. 30(13), 2487–2522 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrett, J.W., Blowey, J.F.: Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math. 98(2), 195–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bear, J., Bear, J.: Hydraulics of Groundwater. McGraw-Hill, Inc., New York (1979)

    MATH  Google Scholar 

  9. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benamou, J.-D., Brenier, Y., Guittet, K.: Numerical analysis of a multi-phasic mass transport problem. Contemp. Math. 353, 1–17 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benamou, J.-D., Carlier, G., Laborde, M.: An augmented Lagrangian approach to Wasserstein gradient flows and applications. In: Gradient flows: from theory to application, volume 54 of ESAIM Proc. Surveys, pp. 1–17. EDP Sci, Les Ulis (2016)

  12. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numer. Math. 121(4), 637–670 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35, 1125–1149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Mathis, H.: Analysis of numerical schemes for semiconductors energy-transport models. Hal-02940224 (2020)

  15. Bessemoulin-Chatard, M., Chainais-Hillairet, C., Vignal, M.-H.: Study of a finite volume scheme for the drift-diffusion system. Asymptotic behavior in the quasi-neutral limit. SIAM J. Numer. Anal. 52(4), 1666–1691 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller–Segel model with additional cross-diffusion. IMA J. Numer. Anal. 34(1), 96–122 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bessemoulin-Chatard, M., Lissoni, G., Mathis, H.: Numerical analysis of DDFV schemes for semiconductors energy-transport models. Hal-03080236 (2020)

  18. Bosma, S., Hamon, F.P., Mallison, B.T., Tchelepi, H.A.: Smooth implicit hybrid upwinding for compositional multiphase flow in porous media. arXiv:2106.03317 (2021)

  19. Braukhoff, M., Jüngel, A.: Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete Cont. Dyn. Sys. B 26, 3335–3355 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Braukhoff, M., Perugia, I., Stocker, P.: An entropy structure preserving space-time Galerkin method for cross-diffusion systems. arXiv:2006.13069 (2020)

  21. Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: A numerical analysis focused comparison of several finite volume schemes for a unipolar degenerated drift-diffusion model. IMA J. Numer. Anal. 41, 271–314 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cancès, C., Chainais-Hillairet, C., Gerstenmayer, A., Jüngel, A.: Finite-volume scheme for a degenerate cross-diffusion model motivated from ion transport. Numer. Meth. Partial Differ. Eqs. 35, 545–575 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cancès, C., Chainais-Hillairet, C., Herda, M., Krell, S.: Large time behavior of nonlinear finite volume schemes for convection-diffusion equations. SIAM J. Numer. Anal. 58(5), 2544–2571 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cancès, C., Ehrlacher, V., Monasse, L.: Finite volumes for the Maxwell–Stefan cross-diffusion system. Submitted for publication. arXiv:2007.09951 (2020)

  25. Cancès, C., Gallouët, T.O., Laborde, M., Monsaingeon, L.: Simulation of multiphase porous media flows with minimizing movement and finite volume schemes. Eur. J. Appl. Math 30(6), 1123–1152 (2019)

    Article  MATH  Google Scholar 

  26. Cancès, C., Gallouët, T.O., Monsaingeon, L.: Incompressible immiscible multiphase flows in porous media: a variational approach. Anal. & PDE 10, 1845–1876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cancès, C., Gaudeul, B.: A convergent entropy diminishing finite volume scheme for a cross-diffusion system. SIAM J. Numer. Anal. 58(5), 2684–2710 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comp. 85(298), 549–580 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cancès, C., Maltese, D.: A gravity current model with capillary trapping for oil migration in multilayer geological basins. SIAM J. Appl. Math 81, 454–484 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cancès, C., Matthes, D.: Construction of a two-phase flow with singular energy by gradient flow methods. arXiv:2003.07632 (2020)

  32. Cancès, C., Matthes, D., Nabet, F.: A two-phase two-fluxes degenerate Cahn–Hilliard model as constrained Wasserstein gradient flow. Arch. Rational Mech. Anal. 232, 837–866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cancès, C., Nabet, F.: Finite volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model. ESAIM Math. Model. Numer. Anal. 55, 969–1003 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Carrillo, J.A., Filbet, F., Schmidtchen, M.: Convergence of a finite volume scheme for a system of interacting species with cross-diffusion. Numer. Math. 145, 473–511 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chainais-Hillairet, C.: Entropy method and asymptotic behaviours of finite volume schemes. In: Finite Volumes for Complex Applications VII. Methods and Theoretical Aspects, volume 77 of Springer Proc. Math. Stat., pp. 17–35. Springer, Cham (2014)

  36. Chainais-Hillairet, C., Jüngel, A., Shpartko, P.: A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors. Numer. Meth. Part. Differ. Eqs. 32, 819–846 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chainais-Hillairet, C., Liu, J.-G., Peng, Y.-J.: Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. ESAIM Math. Model. Numer. Anal. 37, 319–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, X., Daus, E., Jüngel, A.: Global existence analysis of cross-diffusion population systems for multiple species. Arch. Ration. Mech. Anal. 227, 715–747 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Daus, E.S., Jüngel, A., Zurek, A.: Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/draa040

    Article  Google Scholar 

  40. Choquet, C., Diédhiou, M.M., Rosier, C.: Derivation of a sharp-diffuse interfaces model for seawater intrusion in a free aquifer. SIAM J. of Appl. Math. 76, 138–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  42. Dupuit, J.: Études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables. Dunod, Paris (1863)

    Google Scholar 

  43. Eymard, R., Gallouët, T.: \(H\)-convergence and numerical schemes for elliptic problems. SIAM J. Numer. Anal. 41, 539–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P. G. (ed.) et al., Handbook of Numerical Analysis. North-Holland, Amsterdam, pp. 713–1020 (2000)

  45. Eymard, R., Herbin, R., Michel, A.: Mathematical study of a petroleum-engineering scheme. ESAIM Math. Model. Numer. Anal. 37, 937–972 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Galiano, G., Garzón, M., Jüngel, A.: Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. RACSAM Rev. R. Acad. Cien. Ser. A, 95:281–295 (2001)

  47. Gaudeul, B., Fuhrmann, J.: Entropy and convergence analysis for two finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints. HAL: hal-03129529 (2021)

  48. Gerstenmayer, A., Jüngel, A.: Comparison of a finite-element and finite-volume scheme for a degenerate cross-diffusion system for ion transport. Comput. Appl. Math., 38(3):Art. 108, 23 (2019)

  49. Glitzky, A.: Exponential decay of the free energy for discretized electro-reaction? Diffusion systems. Nonlinearity 21, 1989–2009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Golding, M.J., Neufeld, J.A., Hesse, M.A.: Huppert: two-phase gravity currents in porous media. J. Fluid Mech. 678, 248–270 (2011)

    Article  MATH  Google Scholar 

  51. Gunn, I., Woods, A.W.: On the flow of buoyant fluid injected into a confined, inclined aquifer. J. Fluid Mech. 672, 109–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Heida, M.: Convergences of the squareroot approximation scheme to the Fokker-Planck operator Math. Models Methods Appl. Sci. 28(13), 2599–2635 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  53. Huppert, H.E., Woods, A.W.: Gravity-driven flows in porous layers. J. Fluid Mech. 292, 55–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  54. Huo, X., Liu, H., Tzavaras, A.E., Wang, S.: An energy stable and positivity-preserving scheme for the Maxwell-Stefan diffusion system. arXiv:2005.08062 (2020)

  55. Ibrahim, M., Saad, M.: On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model. Comput. Math. Appl. 68(9), 1032–1051 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Jazar, M., Monneau, R.: Derivation of seawater intrusion models by formal asymptotics. SIAM J. Appl. Math. 74, 1152–1173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  57. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jüngel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity 28, 1963–2001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Jüngel, A.: Entropy Methods for Diffusive Partial Differential Equations, BCAM Springer Briefs. Springer, Berlin (2016)

    Book  Google Scholar 

  60. Jüngel, A., Leingang, O.: Convergence of an implicit Euler Galerkin scheme for Poisson–Maxwell–Stefan systems. Adv. Comput. Math. 45(3), 1469–1498 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  61. Jüngel, A., Stelzer, I.V.: Existence analysis of Maxwell? Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45(4), 2421–2440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Jüngel, A., Zurek, A.: A convergent structure-preserving finite-volume scheme for the Shigesada-Kawasaki-Teramoto population system. arXiv:2011.08731 (2020)

  63. Laurençot, P., Matioc, B.-V.: A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47, 319–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Maas, J., Matthes, D.: Long-time behavior of a finite volume discretization for a fourth order diffusion equation. Nonlinearity 29, 1992–2023 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. Nordbotten, J.M., Celia, M.: Geological Storage of CO2: Modeling Approaches for Large scale Simulation. John Wiley & Sons, New Jersey (2012)

    Google Scholar 

  66. Otto, F., Weinan, E.: Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107, 10177–10184 (1997)

    Article  MATH  Google Scholar 

  67. Peletier, M.A.: Variational Modelling: Energies, gradient flows, and large deviations. Lecture notes. arXiv:1402.1990 (2014)

  68. Seis, C., Schlichting, A.: The Scharfetter–Gummel scheme for aggregation-diffusion equations arXiv:2004.13981 (2020)

  69. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79, 83–99 (1979)

    Article  MathSciNet  Google Scholar 

  70. Sun, Z., Carrillo, J.A., Shu, C.-W.: A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials. J. Comput. Phys. 352, 76–104 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sun, Z., Carrillo, J.A., Shu, C.-W.: An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinet. Relat. Models 12(4), 885–908 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two referees for their very careful reading of the manuscript and their constructive comments. The authors have been supported by the multilateral project of the Austrian Agency for International Co-operation in Education and Research (OeAD), Grant FR 01/2021 and by the Campus France PHC AMADEUS program (Grant 46397PA). C. Cancès acknowledges support from the Labex CEMPI (ANR-11-LABX-0007-01) and from the COMODO project (ANR-19-CE46-0002). A. Zurek has been partially supported by the Austrian Science Fund (FWF), Grants P30000, P33010, F65, and W1245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Zurek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancès, C., Zurek, A. A convergent finite volume scheme for dissipation driven models with volume filling constraint. Numer. Math. 151, 279–328 (2022). https://doi.org/10.1007/s00211-022-01270-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01270-7

Mathematics Subject Classification

Navigation