Skip to main content
Log in

Error analysis of implicit Runge–Kutta methods for quasilinear hyperbolic evolution equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We establish error bounds of implicit Runge–Kutta methods for a class of quasilinear hyperbolic evolution equations including certain Maxwell and wave equations on full space or with Dirichlet boundary conditions. Our assumptions cover algebraically stable and coercive schemes such as Gauß and Radau collocation methods. We work in a refinement of the analytical setting of Kato’s well-posedness theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131(4), 713–735 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  3. Burrage, K., Butcher, J.C.: Stability criteria for implicit Runge–Kutta methods. SIAM J. Numer. Anal. 16(1), 46–57 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Busch, K., von Freymann, G., Linden, S., Mingaleev, S.F., Tkeshelashvili, L., Wegener, M.: Periodic nanostructures for photonics. Phys. Rep. 444(3–6), 101–202 (2007)

    Article  Google Scholar 

  5. Crandall, M.G., Souganidis, P.E.: Convergence of difference approximations of quasilinear evolution equations. Nonlinear Anal. 10(5), 425–445 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Crouzeix, M.: Sur la \(B\)-stabilité des méthodes de Runge–Kutta. Numer. Math. 32(1), 75–82 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Volume 194 of Graduate Texts in Mathematics. Springer, New York (2000)

    Google Scholar 

  8. Guès, O.: Problème mixte hyperbolique quasi-linéaire caractéristique. Commun. Partial Differ. Equ. 15(5), 595–645 (1990)

    Article  MATH  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. Hochbruck, M., Pažur, T.: Implicit Runge–Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J. Numer. Anal. 53(1), 485–507 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochbruck, M., Pažur, T.: Error analysis of implicit Euler methods for quasilinear hyperbolic evolution equations. Numer. Math. 135(2), 547–569 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kanda, S.: Convergence of difference approximations and nonlinear semigroups. Proc. Am. Math. Soc. 108(3), 741–748 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens). Lecture Notes in Math., vol. 448, pp. 25–70. Springer, Berlin (1975)

  15. Kato, T.: Quasilinear equations of evolution in nonreflexive Banach spaces. In: Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), Volume 81 of North-Holland Math. Stud., pp. 61–76. North-Holland, Amsterdam (1983)

  16. Kobayashi, Y.: Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups. J. Math. Soc. Jpn. 27(4), 640–665 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kovács, B., Lubich, C.: Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type. Numer. Math., online first (2017). doi:10.1007/s00211-017-0909-3

  18. Lubich, C., Ostermann, A.: Runge–Kutta approximation of quasi-linear parabolic equations. Math. Comput. 64(210), 601–628 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mansour, D.: Gauss–Runge–Kutta time discretization of wave equations on evolving surfaces. Numer. Math. 129(1), 21–53 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Müller, D.: Well-posedness for a general class of quasilinear evolution equations with applications to Maxwell’s equations. Ph.D. thesis, Karlsruhe Institute of Technology. https://publikationen.bibliothek.kit.edu/1000042147 (2014)

  21. Takahashi, T.: Convergence of difference approximation of nonlinear evolution equations and generation of semigroups. J. Math. Soc. Jpn. 28(1), 96–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlis Hochbruck.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via CRC 1173.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochbruck, M., Pažur, T. & Schnaubelt, R. Error analysis of implicit Runge–Kutta methods for quasilinear hyperbolic evolution equations. Numer. Math. 138, 557–579 (2018). https://doi.org/10.1007/s00211-017-0914-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0914-6

Mathematics Subject Classification

Navigation