Skip to main content
Log in

Gauss–Runge–Kutta time discretization of wave equations on evolving surfaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is concerned with an error analysis for a full discretization of the linear wave equation on a moving surface. The equation is discretized in space by the evolving surface finite element method. Discretization in time is done by Gauß–Runge–Kutta (GRK) methods, aiming for higher-order accuracy in time and unconditional stability of the fully discrete scheme. The latter is established in the natural time-dependent norms by using the algebraic stability and the coercivity property of the GRK methods together with the properties of the spatial semi-discretization. Under sufficient regularity conditions, optimal-order error estimates for this class of fully discrete methods are shown. Numerical experiments are presented to confirm some of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bastian, P., Blatt, M., Dedner, A., Engwer, C., Fahlke, J., Gräser, C., Klöfkorn, R., Nolte, M., Ohlberger, M., Sander, O. (2013) http://www.dune-project.org

  2. Burrage, K., Hundsdorfer, W.H., Verwer, J.G.: A study of B-convergence of Runge–Kutta methods. Computing 36(1), 17–34 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deckelnick, K., Elliott, C., Styles, V.: Numerical diffusion-induced grain boundary motion. Interfaces Free Bound. 3, 393–414 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dekker, K., Kraaijevanger, J.F.B.M., Spijker, M.N.: The order of B-convergence of the Gaussian Runge–Kutta method. Computing 36(1), 35–41 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive scientific computing: abstraction principles and the DUNE-FEM module. Computing 90, 165–196 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M. (2013) http://dune.mathematik.uni-freiburg.de

  7. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dziuk, G., Elliott, C.M.: \(L^2\)-estimates for the evolving surface finite element method. Math. Comp. 82, 1–24 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dziuk, G., Elliott, C.M.: A fully discrete evolving surface finite element method., vol. 50, No. 5, pp. 2677–2694. ISSN 1095–7170 (2012)

  10. Dziuk, G., Elliott, C.M.: SIAM J. Numer. Anal. 50(5), 2677–2694 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dziuk, G., Lubich, C., Mansour, D.: Runge–Kutta time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 32, 394–416 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-Preserving Algorithms for Ordinary Differential Equations. 2nd ed. Springer, Berlin (2006)

  14. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I. Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  15. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and differential-algebraic problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  16. Halpern, D., Jenson, O.E., Grotberg, J.B.: A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85, 333–352 (1998)

    Google Scholar 

  17. James, A., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comp. Phys. 201, 685–722 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kraaijevanger, J.F.B.M.: B-convergence of the implicit midpoint rule and the trapezoidal rule. BIT Numer. Math. 25(4), 652–666 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lenz, M., Nemadjieu, S.F., Rumpf, M.: A convergent finite volume scheme for diffusion on evolving surfaces. SIAM J. Numer. Anal. 49(1), 15–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lubich, C., Ostermann, A.: Runge–Kutta methods for parabolic equations and convolution quadrature. Math. Comp. 60, 105–131 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lubich, C., Ostermann, A.: Interior estimates for time discretizations of parabolic equations. Appl. Numer. Math. 18, 241–251 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lubich, C., Mansour, D.: Variational discretization of linear wave equations on evolving surfaces. Math. Comp. (to appear)

  23. Lubich, C., Mansour, D., Venkataraman, Ch.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal., (2013). doi:10.1093/imanum/drs044

  24. Mansour, D.: Dissertation (PhD thesis), Univ. Tübingen (2013)

  25. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Memoli, F., Sapiro, G., Thompson, P.: Implicit brain imaging. Human Brain Mapp. 23, 179–188 (2004)

    Google Scholar 

  27. Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50, 405–418 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank Christian Lubich for introducing him to the topic of this paper, for the fruitful discussions and insightful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhia Mansour.

Additional information

This work was supported by DFG, SFB/TR 71 “Geometric Partial Differential Equations”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, D. Gauss–Runge–Kutta time discretization of wave equations on evolving surfaces. Numer. Math. 129, 21–53 (2015). https://doi.org/10.1007/s00211-014-0632-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0632-2

Mathematics Subject Classification (2000)

Navigation