Skip to main content

Advertisement

Log in

Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients’ new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

PCD:

Programmed cell death

Fas:

Fatty acid synthetase

mFas:

Membrane fatty acid synthetase

sFas:

Soluble fatty acid synthetase

FasL:

Fatty acid synthetase ligand

FasR:

Fatty acid synthetase receptor

TNF:

Tumor necrosis factor

TNFα:

Tumor necrosis factor-alpha

TNFR1:

Tumor necrosis factor receptor 1

TNFR2:

Tumor necrosis factor receptor 2

APO-1:

Apoptosis antigen 1

DISC:

Death-inducing signaling complex

CD95:

Cluster of differentiation 95

DD:

Death domain

CD4:

Cluster of differentiation 4

Bcl-2:

B cell lymphoma protein 2

TRADD:

TNF receptor–associated death domain

NF-kB:

NF-kappa B

JNK:

C-Jun N-terminal kinase

MOMP:

Mitochondrial outer membrane permeabilization

SMAC:

Second mitochondrial activator of caspases

DIABLO:

Direct IAP–binding protein with low PI

HtrA2:

High-temperature requirement

AIF:

Apoptosis-inducing factor

CAD:

Caspase-activated DNase

Bcl-10:

B cell lymphoma protein 10

BAX:

BCL2-associated X protein

BAK:

BCL2 antagonist killer 1

BID:

BH3-interacting domain death agonist

BAD:

BCL2 antagonist of cell death

BIM:

BCL2-interacting protein BIM

BIK:

BCL2-interacting killer

BLK:

Bik-like killer protein

Bcl-X:

BCL2 like 1

Bcl-XL:

BCL2-related protein, long isoform

Bcl-XS:

BCL2-related protein, short isoform

Bcl-W:

BCL2 like 2 proteins

BAG:

BCL2-associated athanogene

Puma:

BCL2-binding component 3

Noxa:

Phorbol-12-myristate-13-acetate–induced protein 1

Caspase-9:

Cysteinyl aspartic acid-protease-9

UPR:

Unfolded protein response

ER:

Endoplasmic reticulum

IP3R:

1,4,5-Triphosphate receptor

RyR:

Ryanodine receptor

LMP:

Lysosomal membrane permeabilization

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

HD:

Huntington’s disease

ALS:

Amyotrophic lateral sclerosis

Cyto-C:

Cytochrome C

LPS:

Lipopolysaccharide

COX-2:

Cycloxygenase-2

IL-1:

Interluekin-1

IL-6:

Interluekin-6

MAPK:

Mitogen-activated protein kinase

AA:

Asiatic acid

MMP:

Mitochondrial matrix metalloproteinase

NLRP3:

NLR family pyrin domain containing 3

GSH:

Glutathione

SOD:

Superoxide dismutase

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

CA1:

Cornu ammonis 1

CA3:

Cornu ammonis 3

DA:

Dopamine

FA:

Ferulic acid

CAT:

Catalase

GPx:

Glutathione peroxidase

6-OHDA:

6-Hydroxydopamine hydrobromide

DRP-1:

Dynamin-related protein 1

PGC1:

Peroxisome proliferator–activated receptor-gamma coactivator

MFN-2:

Mutofusin-2

HSP-70:

70 Kilodalton heat shock proteins

TH:

Thyroxine

TQ:

Thymoquinone

IFN:

Interferon

EA:

Ellagic acid

MDA:

Malondialdehyde

NRF-2:

Nuclear factor erythroid 2–related factor 2

CA:

Caffeic acid

CAPE:

Caffeine phenethyl ester

RNS:

Reactive nitrogen species

AKT:

Protein kinase B

AIF:

Apoptosis-inducing factor

MAO-B:

Monoamine oxidase B

EGCG:

Epigallocatechin-3-gallate

PQ:

Paraquat

Caspase-3:

Cysteinyl aspartic acid-protease-3

NDD:

Neurodegenerative disorders

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

CHOP:

C/EBP homologous protein

TF:

Theaflavin

GBE:

Gingko biloba leaf extract

ERK1/2:

Extracellular signal–regulated protein kinase

SF:

Sodium ferulate

Aβ:

Amyloid beta

SIRT1:

Sirtuin 1

STZ:

Streptozocin

TLR4:

Toll-like receptor 4

BIM:

Bcl-2-like protein 11

GADD45:

Growth arrest and DNA damage–inducible 45 proteins

CA:

Centella asiatica

CB:

Cannabinoid

9-THC:

(9)-Tetrahydrocannabinol

CBD:

Cannabidiol

GABA:

Gamma-aminobutyric acid

References

  • Abdulwanis Mohamed Z et al (2019) Neuroprotective potential of secondary metabolites from Melicope lunu-ankenda (Rutaceae). Molecules 24(17):3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajayi SA et al (2011) The microstructural effects of aqueous extract of Garcinia kola (Linn) on the hippocampus and cerebellum of malnourished mice. Asian Pac J Trop Biomed 1(4):261–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Akbar M et al (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 1637:34–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Amri JS et al (2013) Effect of epigallocatechin-3-gallate on inflammatory mediators release in LPS-induced Parkinson’s disease in rats. Indian J Exp Biol 51(5):357–62

    CAS  PubMed  Google Scholar 

  • Allen RT et al (1997) Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol Methods 37(4):215–228

    Article  CAS  PubMed  Google Scholar 

  • Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9(4):367–393

    Article  CAS  PubMed  Google Scholar 

  • Anand A et al (2019) Vanillin: a comprehensive review of pharmacological activities. Plant Arch 19(2):1000–1004

    Google Scholar 

  • Anandhan A et al (2013a) Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 23(2):166–173

    Article  CAS  PubMed  Google Scholar 

  • Ardah MT et al (2020) Ellagic acid prevents dopamine neuron degeneration from oxidative stress and neuroinflammation in MPTP model of Parkinson’s disease. Biomolecules 10(11):1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asadian G et al (2011) Study of variation of biochemical components inhypericum perforatum l. grown in north of Iran. J Med Plants Res 6(3)

  • Association A (2018) 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 14(3):367–429

    Article  Google Scholar 

  • Babbar R et al (2021) A comprehensive review on therapeutic applications of ferulic acid and its novel analogues: a brief literature. Mini Rev Med Chem 21(12):1578–1593

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan R et al (2021) Natural phytochemicals as novel therapeutic strategies to prevent and treat Parkinson’s disease: current knowledge and future perspectives. Oxid Med Cell Longev 25:2021:6680935

  • Baluchnejadmojarad T et al (2017) Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease: possible involvement of ERβ/Nrf2/HO-1 signaling. Brain Res 1662:23–30

    Article  CAS  PubMed  Google Scholar 

  • Barone E et al (2009) Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 10(2):97–108

    Article  CAS  PubMed  Google Scholar 

  • Bian D et al (2012) Madecassoside, a triterpenoid saponin isolated from Centella asiatica herbs, protects endothelial cells against oxidative stress. J Biochem Mol Toxicol 26(10):399–406

    Article  CAS  PubMed  Google Scholar 

  • Binawade Y, Jagtap A (2013) Neuroprotective effect of lutein against 3-nitropropionic acid–induced Huntington’s disease–like symptoms: possible behavioral, biochemical, and cellular alterations. J Med Food 16(10):934–943

    Article  CAS  PubMed  Google Scholar 

  • Blamire A et al (2000) Interleukin-1β-induced changes in blood–brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20(21):8153–8159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15(6):725–731

    Article  CAS  PubMed  Google Scholar 

  • Borase HP et al (2022) Design and evaluation of natural deep eutectic solvents system for chrysin to elicit its solubility, stability, and bioactivity. J Mol Liq 345:118205

    Article  CAS  Google Scholar 

  • Broderick TL et al (2020) Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease. Int J Mol Sci 21(19)

  • Buba CI et al (2016) Garcinia kola: the phytochemistry, pharmacology and therapeutic applications. Int J Pharmacognosy 3(2):67–81

    CAS  Google Scholar 

  • Burz C et al (2009) Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 48(6):811–821

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ et al (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213(1):48–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandran R, Abrahamse H (2020) Identifying plant-based natural medicine against oxidative stress and neurodegenerative disorders. Oxid Med Cell Longev 2020:8648742

  • Chaudhary P et al (2011) Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J Neuroimmunol 233(1–2):90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary A et al (2019) Ferulic acid: a promising therapeutic phytochemical and recent patents advances. Recent Pat Inflamm Allergy Drug Discov 13(2):115–123

    Article  CAS  PubMed  Google Scholar 

  • Chen S et al (2014) Celastrol prevents cadmium-induced neuronal cell death via targeting JNK and PTEN-Akt/mTOR network. J Neurochem 128(2):256–266

    Article  CAS  PubMed  Google Scholar 

  • Chen D et al (2019) Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing mitochondrial ROS production. Biomol Ther 27(5):442

    Article  CAS  Google Scholar 

  • Chongtham A, Agrawal N (2016) Curcumin modulates cell death and is protective in Huntington’s disease model. Sci Rep 6(1):1–10

    Article  Google Scholar 

  • Choudhury B (2015) Approach to neurological disorder in Ayurveda. Ind J Med Res and Pharm Sci 2:69–73

    Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden. J Sci Food Agric 79(3):362–372

    Article  CAS  Google Scholar 

  • Colín-González AL et al (2012) The antioxidant mechanisms underlying the aged garlic extract-and S-allylcysteine-induced protection. Oxid Med Cell Longev 2012:907162

  • Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206(7):1107–1115

    Article  CAS  PubMed  Google Scholar 

  • Crespo-Bujosa HB, Gonzalez MJ (2018) Phytochemicals for the treatment of multiple sclerosis? A review of scientific evidence. J Orthomol Med 33(1):1–8

    Google Scholar 

  • Cui J et al (2018) Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: possible role of PPAR-γ, Bax/Bcl-2, and caspase-3. Food Chem Toxicol 121:95–108

    Article  CAS  PubMed  Google Scholar 

  • D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592

    Article  PubMed  Google Scholar 

  • David AVA et al (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84

    Article  CAS  Google Scholar 

  • DeMaagd G, Philip A (2015) Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharmacy and Therapeutics 40(8):504

    PubMed  PubMed Central  Google Scholar 

  • Diamant G (1829) Dikstein R (2013) Transcriptional control by NF-κB: elongation in focus. Biochim Biophys Acta 9:937–945

    Google Scholar 

  • Dinc E et al (2017) Protective effect of combined caffeic acid phenethyl ester and bevacizumab against hydrogen peroxide-induced oxidative stress in human RPE cells. Curr Eye Res 42(12):1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Doonan F, Cotter TG (2008) Morphological assessment of apoptosis. Methods 44(3):200–204

    Article  CAS  PubMed  Google Scholar 

  • Dyment DA et al (2004) Genetics of multiple sclerosis. The Lancet Neurology 3(2):104–110

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi SS et al (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114

    Article  CAS  PubMed  Google Scholar 

  • Ekowati J et al (2020) Ferulic acid prevents angiogenesis through cyclooxygenase-2 and vascular endothelial growth factor in the chick embryo chorioallantoic membrane model. Turk J Pharm Sci 17(4):424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernanin Dyah W et al (2021) Virtual prediction of purple rice ferulic acid as anti-inflammatory of TNF-α signaling. Berkala Penelitian Hayati 27(2):59–66

    Google Scholar 

  • Farkhondeh T et al (2019) Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed Pharmacother 109:1120–1125

    Article  CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26(1):263–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei C et al (2013) Ginkgo biloba extract protects substantia nigral neurons from apoptosis in PD rat model. J Neurol Disord 1(118):2

    Google Scholar 

  • Ficarra S et al (2016) Insights into the properties of the two enantiomers of trans-δ-viniferin, a resveratrol derivative: antioxidant activity, biochemical and molecular modeling studies of its interactions with hemoglobin. Mol BioSyst 12(4):1276–1286

    Article  CAS  PubMed  Google Scholar 

  • Finucane DM et al (1999) Bax-induced caspase activation and apoptosis via cytochromec release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274(4):2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Firdaus F et al (2018) Ellagic acid attenuates arsenic induced neuro-inflammation and mitochondrial dysfunction associated apoptosis. Toxicol Rep 5:411–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher M et al (1987) Linoleic acid levels in white blood cells, platelets, and serum of multiple sclerosis patients. Acta Neurol Scand 76(4):241–245

    Article  CAS  PubMed  Google Scholar 

  • Fleischer A et al (2006) Modulating apoptosis as a target for effective therapy. Mol Immunol 43(8):1065–1079

    Article  CAS  PubMed  Google Scholar 

  • Fulda S et al (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discovery 9(6):447–464

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli P et al (2009) Distinct effects of Δ9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing. Arch Gen Psychiatry 66(1):95–105

    Article  CAS  PubMed  Google Scholar 

  • Galende AV et al (2021) Report by the Spanish Foundation of the Brain on the social impact of Alzheimer disease and other types of dementia. Neurología (english Edition) 36(1):39–49

    Article  Google Scholar 

  • Ghadially FN (2013) Ultrastructural pathology of the cell and matrix: a text and atlas of physiological and pathological alterations in the fine structure of cellular and extracellular components. Butterworth-Heinemann

    Google Scholar 

  • Giatti S et al (2012) Neuroactive steroids, their metabolites, and neuroinflammation. J Mol Endocrinol 49(3):R125–R134

    Article  CAS  PubMed  Google Scholar 

  • Gomes BAQ et al (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: role of SIRT1. Oxid Med Cell Longev 2018:8152373

  • Gomez DR et al (2013) Neuroprotective properties of standardized extracts of Hypericum perforatum on rotenone model of Parkinson’s disease. CNS Neurol Disord Drug Targets 12(5):665–679

    Article  Google Scholar 

  • Granja A et al (2017) Therapeutic potential of epigallocatechin gallate nanodelivery systems. Biomed Res Int 2017:5813793

  • Gu X et al (2016) Protective effect of paeoniflorin on inflammation and apoptosis in the cerebral cortex of a transgenic mouse model of Alzheimer’s disease. Mol Med Rep 13(3):2247–2252

    Article  CAS  PubMed  Google Scholar 

  • Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2):85–94

    Article  CAS  PubMed  Google Scholar 

  • Gul S et al (1970) Fatty acid composition of phospholipids from platelets and erythrocytes in multiple sclerosis. J Neurol Neurosurg Psychiatry 33(4):506–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo B et al (2016) Multifunction of chrysin in Parkinson’s model: anti-neuronal apoptosis, neuroprotection via activation of MEF2D, and inhibition of monoamine oxidase-B. J Agric Food Chem 64(26):5324–5333

    Article  CAS  PubMed  Google Scholar 

  • Gupta A et al (2021) Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv Protein Chem Struct Biol 125:215–257

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155

    Article  PubMed  Google Scholar 

  • Hanna DM et al (2015) ADIOL protects against 3-NP-induced neurotoxicity in rats: possible impact of its anti-oxidant, anti-inflammatory and anti-apoptotic actions. Prog Neuropsychopharmacol Biol Psychiatry 60:36–51

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33(2):191–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashim P (2011) Centella asiatica in food and beverage applications and its potential antioxidant and neuroprotective effect. Int Food Res J 18(4):44056033

  • Hashimoto M, Hossain S (2011) Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer’s disease. J Pharmacol Sci 116(2):150–162

    Article  CAS  PubMed  Google Scholar 

  • He Z et al (2023) Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer’s disease. Redox Biol 66:102848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengartner MO (1997) Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Exp Gerontol 32(4–5):363–374

    Article  CAS  PubMed  Google Scholar 

  • Horvitz HR (1994) Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Springer, Apoptosis, pp 1–13

    Google Scholar 

  • Hou RR et al (2008) Neuroprotective effects of (−)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells. Cell Biol Int 32(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Huang W-C, Hung M-C (2013) Beyond NF-κB activation: nuclear functions of IκB kinase α. J Biomed Sci 20:1–13

    Article  Google Scholar 

  • Huang C-L et al (2011) Gastrodia elata prevents huntingtin aggregations through activation of the adenosine A2A receptor and ubiquitin proteasome system. J Ethnopharmacol 138(1):162–168

    Article  PubMed  Google Scholar 

  • Imai T et al (2014) Protective effect of S-allyl-L-cysteine against endoplasmic reticulum stress-induced neuronal death is mediated by inhibition of calpain. Amino Acids 46:385–393

    Article  CAS  PubMed  Google Scholar 

  • Janhom P, Dharmasaroja P (2015) Neuroprotective effects of alpha-mangostin on MPP+-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. J Toxicol 2015:919058

  • Jena AB et al (2022) An in silico investigation on the interactions of curcumin and epigallocatechin-3-gallate with NLRP3 inflammasome complex. Biomed Pharmacother 156:113890

    Article  CAS  PubMed  Google Scholar 

  • Jin Y et al (2008) Neuroprotective effect of sodium ferulate and signal transduction mechanisms in the aged rat hippocampus 1. Acta Pharmacol Sin 29(12):1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Johnson TV et al (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol vis Sci 51(4):2051–2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph J et al (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 29(41):12795–12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung KK et al (2006) Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci 79(21):2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Kang C-H et al (2013) Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int Immunopharmacol 17(3):808–813

    Article  ADS  CAS  PubMed  Google Scholar 

  • Karimi A et al (2015) Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 4(1):27

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal V, Schlichter LC (2008) Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 28(9):2221–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana N, Gajbhiye A (2013) Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson’s disease. Neurotoxicology 39:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J et al (2007) Epigallocatechin-3-gallate suppresses NF-κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. J Nutr Biochem 18(9):587–596

    Article  CAS  PubMed  Google Scholar 

  • Kim IS et al (2011) Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 16(7):5349–5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirimlioglu V et al (2008) Effect of resveratrol on oxidative stress enzymes in rats subjected to 70% partial hepatectomy. Elsevier, Transplantation proceedings

    Book  Google Scholar 

  • Koch M et al (2006) Erythrocyte membrane fatty acids in benign and progressive forms of multiple sclerosis. J Neurol Sci 244(1–2):123–126

    Article  CAS  PubMed  Google Scholar 

  • Koh S-H et al (2006) The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci Lett 395(2):103–107

    Article  CAS  PubMed  Google Scholar 

  • Kou X et al (2012) Ampelopsin inhibits H2O2-induced apoptosis by ERK and Akt signaling pathways and up-regulation of heme oxygenase-1. Phytother Res 26(7):988–994

    Article  CAS  PubMed  Google Scholar 

  • Kumar P et al (2009a) Lycopene modulates nitric oxide pathways against 3-nitropropionic acid-induced neurotoxicity. Life Sci 85(19–20):711–718

    Article  CAS  PubMed  Google Scholar 

  • Kumar P et al (2009b) Sesamol attenuate 3-nitropropionic acid-induced Huntington-like behavioral, biochemical, and cellular alterations in rats. J Asian Nat Prod Res 11(5):439–450

    Article  CAS  PubMed  Google Scholar 

  • Kumar M et al (2021) Tomato (Solanum lycopersicum L.) seed: a review on bioactives and biomedical activities. Biomed Pharmacother 142:112018

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    Article  CAS  PubMed  Google Scholar 

  • Lam PY, Ko KM (2012) Beneficial effect of (–) Schisandrin B against 3-nitropropionic acid-induced cell death in PC12 cells. BioFactors 38(3):219–225

    Article  CAS  PubMed  Google Scholar 

  • Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501(1):65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legiawati L et al (2018) In silico study of Centella asiatica active compounds as anti-inflammatory agent by decreasing Il-1 and Il-6 activity, promoting Il-4 activity. J Pharm Sci Res 10(9):2142–2147

    CAS  Google Scholar 

  • Li Y-H et al (2017) Antioxidant effects of celastrol against hydrogen peroxide-induced oxidative stress in the cell model of amyotrophic lateral sclerosis. Sheng Li Xue Bao 69(6):751–758

    PubMed  Google Scholar 

  • Li C et al (2018) Pinostrobin exerts neuroprotective actions in neurotoxin-induced Parkinson’s disease models through Nrf2 induction. J Agric Food Chem 66(31):8307–8318

    Article  ADS  PubMed  Google Scholar 

  • Lv J et al (2018) Pharmacological review on asiatic acid and its derivatives: a potential compound. SLAS Technology 23(2):111–127

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lyman M et al (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12

    Article  CAS  PubMed  Google Scholar 

  • Maianski NA et al (2003) Tumor necrosis factor α induces a caspase-independent death pathway in human neutrophils. Blood, J Am Soc Hematol 101(5):1987–1995

    CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manavalan A et al (2012) Gastrodia elata Blume (Tianma) mobilizes neuro-protective capacities. Int J Biochem Mol Biol 3(2):219

    PubMed  PubMed Central  Google Scholar 

  • Mandel S et al (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88(6):1555–1569

    Article  CAS  PubMed  Google Scholar 

  • Marracci GH et al (2002) Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 131(1–2):104–114

    Article  CAS  PubMed  Google Scholar 

  • Meesarapee B et al (2014) Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytother Res 28(4):611–616

    Article  CAS  PubMed  Google Scholar 

  • Millington C et al (2014) Chronic neuroinflammation in Alzheimer’s disease: new perspectives on animal models and promising candidate drugs. Biomed Res Int 2014:309129

  • Ming LC (2016) Use of herbal products in Southeast Asian countries. Arch Pharm Pract 7(5):S1

    Article  Google Scholar 

  • Mir RH et al (2022) Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: an update. Curr Neuropharmacol 20(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  • Mir SM et al (2016) Omega-3 fatty acids in inflammatory diseases. Omega-3 Fatty Acids: Keys to Nutritional Health 141–155. https://doi.org/10.1007/978-3-319-40458-5

  • Moon D-O et al (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288(2):183–191

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Espín D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496

    Article  PubMed  Google Scholar 

  • Musfiroh I et al (2023) Stability analysis of the asiatic acid-COX-2 complex using 100 ns molecular dynamic simulations and its selectivity against COX-2 as a potential anti-inflammatory candidate. Molecules 28(9):3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabavi SF et al (2015) Luteolin as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 119:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nagoor Meeran MF et al (2018) Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: a pentacyclic triterpenoid of therapeutic promise. Front Pharmacol 9:892

    Article  PubMed  PubMed Central  Google Scholar 

  • Naik E, Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208(3):417–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nataraj J et al (2016) Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutr Neurosci 19(6):237–246

    Article  CAS  PubMed  Google Scholar 

  • Naziroglu M et al (2014) Modulation of oxidative stress, apoptosis, and calcium entry in leukocytes of patients with multiple sclerosis by Hypericum perforatum. Nutr Neurosci 17(5):214–221

    Article  PubMed  Google Scholar 

  • Nicholas R, Rashid W (2013) Multiple sclerosis. Am Fam Physician 87(10):712

    PubMed  Google Scholar 

  • Noursadeghi M et al (2008) Quantitative imaging assay for NF-κB nuclear translocation in primary human macrophages. J Immunol Methods 329(1–2):194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orhan IE (2012) Centella asiatica (L.) Urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Alternat Med 2012:946259

  • Ossola B et al (2009) The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf 8(4):397–409

    Article  CAS  PubMed  Google Scholar 

  • Otuechere CA et al (2023) Action of vanillin-spiked zinc ferrite nanoparticles against cadmium-induced liver damage: computational insights with AKT 1, BCl-2 and TLR 8 proteins. J Drug Deliv Sci Technol 80:104139

    Article  CAS  Google Scholar 

  • Packer L et al (1997) Neuroprotection by the metabolic antioxidant α-lipoic acid. Free Radical Biol Med 22(1–2):359–378

    Article  CAS  Google Scholar 

  • Pal SK, Shukla Y (2003) Herbal medicine: current status and the future. Asian Pac J Cancer Prev 4(4):281–288

    PubMed  Google Scholar 

  • Park S et al (2011) Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol 164(3):1008–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parodi V, Jacchetti E, Osellame R, Cerullo G, Polli D, Raimondi MT (2020) Nonlinear Optical Microscopy: From Fundamentals to Applications in Live Bioimaging. Front Bioeng Biotechnol 8:585363

  • Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 1785(2):182–206

    CAS  PubMed  Google Scholar 

  • Pedraza-Chaverrí J et al (2009) ROS scavenging capacity and neuroprotective effect of α-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp Toxicol Pathol 61(5):491–501

    Article  PubMed  Google Scholar 

  • Peng W et al (2022) Paeoniflorin is a promising natural monomer for neurodegenerative diseases via modulation of Ca2+ and ROS homeostasis. Curr Opin Pharmacol 62:97–102

    Article  CAS  PubMed  Google Scholar 

  • Pérez-De La Cruz V et al (2006) Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes. Brain Res Bull 68(5):379–383

    Article  PubMed  Google Scholar 

  • Psotova J et al (2006) Photoprotective properties of Prunella vulgaris and rosmarinic acid on human keratinocytes. J Photochem Photobiol, B 84(3):167–174

    Article  CAS  PubMed  Google Scholar 

  • Qu M et al (2011) Protective effects of lycopene against amyloid β-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 505(3):286–290

    Article  CAS  PubMed  Google Scholar 

  • Qureshi M et al (2018) Therapeutic potential of curcumin for multiple sclerosis. Neurol Sci 39:207–214

    Article  PubMed  Google Scholar 

  • Radad K et al (2009) Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res 23(5):696–700

    Article  CAS  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441(7097):1080–1086

    Article  ADS  CAS  PubMed  Google Scholar 

  • Rani L et al (2022) Evaluation of potential neuroprotective effects of Vanillin against MPP+/MPTP-induced dysregulation of dopaminergic regulatory mechanisms in SH-SY5Y cells and a mouse model of Parkinson’s disease. Mol Neurobiol 60(8):4693–4715

    Article  Google Scholar 

  • Ravishankar D et al (2016) Thioflavones as novel neuroprotective agents. Bioorg Med Chem 24(21):5513–5520

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Savill J (1998) Apoptosis: the importance of being eaten. Cell Death Differ 5(7):563–568

    Article  CAS  PubMed  Google Scholar 

  • Renaud J et al (2015) Epigallocatechin-3-gallate, a promising molecule for Parkinson’s disease? Rejuvenation Res 18(3):257–269

    Article  CAS  PubMed  Google Scholar 

  • Roach H et al (2004) Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 9(3):265–277

    Article  CAS  PubMed  Google Scholar 

  • Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    Article  CAS  PubMed  Google Scholar 

  • Sagredo O et al (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci 26(4):843–851

    Article  PubMed  Google Scholar 

  • Sagredo O et al (2012) Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Pat CNS Drug Discov 7(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Salehi B et al (2019) The therapeutic potential of apigenin. Int J Mol Sci 20(6):1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salinthone S et al (2008) Lipoic acid: a novel therapeutic approach for multiple sclerosis and other chronic inflammatory diseases of the CNS. Endocr Metab Immune Disord Drug Targets 8(2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Salinthone S et al (2010) Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling. PLoS ONE 5(9):e13058

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Samarghandian S et al (2018) A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS Neurol Disord Drug Targets 17(6):412–420

    Article  CAS  PubMed  Google Scholar 

  • Sandhir R, Mehrotra A (2013) Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: implications in Huntington’s disease. Biochim Biophys Acta 1832(3):421–430

    Article  CAS  PubMed  Google Scholar 

  • Sandhir R et al (2014) Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. NeuroMol Med 16(1):106–118

    Article  CAS  Google Scholar 

  • Sani MM et al (2016) Phytopharmacology and phytotherapy of regulatory T cells: a new approach to treat multiple sclerosis. Pharm Lett 8(3):215–220

    Google Scholar 

  • Saravanan V et al (2021) Molecular docking of active compounds from Phoenix pusilla root extract against antidiabetic and anti-inflammatory drug targets. J Appl Biol Biotechnol 9(1):26–30

    CAS  Google Scholar 

  • Sarkaki A et al (2019) Chrysin prevents cognitive and hippocampal long-term potentiation deficits and inflammation in rat with cerebral hypoperfusion and reperfusion injury. Life Sci 226:202–209

    Article  CAS  PubMed  Google Scholar 

  • Saudou F, Humbert S (2016) The biology of huntingtin. Neuron 89(5):910–926

    Article  CAS  PubMed  Google Scholar 

  • Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8):2073S-2085S

    Article  CAS  PubMed  Google Scholar 

  • Schillace R et al (2007) Lipoic acid stimulates cAMP production in T lymphocytes and NK cells. Biochem Biophys Res Commun 354(1):259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuh C, Schieberle P (2006) Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: quantitative differences between tea leaves and infusion. J Agric Food Chem 54(3):916–924

    Article  CAS  PubMed  Google Scholar 

  • Seeram NP et al (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16(6):360–367

    Article  CAS  PubMed  Google Scholar 

  • Sethi G et al (2007) Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-κB–regulated gene products and TAK1-mediated NF-κB activation. Blood 109(7):2727–2735

    Article  CAS  PubMed  Google Scholar 

  • Sgarbossa A et al (2015) Ferulic acid: a hope for Alzheimer’s disease therapy from plants. Nutrients 7(7):5764–5782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shabab T et al (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127(7):624–633

    Article  CAS  PubMed  Google Scholar 

  • Sharma J et al (2013) Ethnomedicinal plants used for treating epilepsy by indigenous communities of sub-Himalayan region of Uttarakhand, India. J Ethnopharmacol 150(1):353–370

    Article  PubMed  Google Scholar 

  • Sharma D et al (2016) Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 324:163–176

    Article  CAS  PubMed  Google Scholar 

  • Shi C et al (2010) Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 11(1):107–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X et al (2015) Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett 594:105–110

    Article  CAS  PubMed  Google Scholar 

  • Shinomol GK (2008) Effect of Centella asiatica leaf powder on oxidative markers in brain regions of prepubertal mice in vivo and its in vitro efficacy to ameliorate 3-NPA-induced oxidative stress in mitochondria. Phytomedicine 15(11):971–984

    Article  PubMed  Google Scholar 

  • Silva JM et al (2020) Secondary metabolites with antioxidant activities for the putative treatment of amyotrophic lateral sclerosis (ALS): “Experimental evidences”. Oxid Med Cell Longev 2020:5642029

  • Singh R et al (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KJ (2006) Pathophysiology of multiple sclerosis. Rev Prat 56(12):1299–1303

    PubMed  Google Scholar 

  • Srinivasan M et al (2007) Ferulic acid: therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition 40(2):92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suk K (2005) Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. Neurosignals 14(1–2):23–33

    Article  CAS  PubMed  Google Scholar 

  • Swaroop S et al (2016) HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 13:1–19

    Article  Google Scholar 

  • Tancheva LP et al (2020) Neuroprotective mechanisms of three natural antioxidants on a rat model of parkinson’s disease: a comparative study. Antioxidants 9(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D et al (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taupin P (2008) Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. Int J Med Sci 5(3):127

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Tie L et al (2008) Down-regulation of brain-pancreas relative protein in diabetic rats and by high glucose in PC12 cells: prevention by calpain inhibitors. J Pharmacol Sci 106(1):28–37

    Article  CAS  PubMed  Google Scholar 

  • Tronche F et al (1997) Analysis of the distribution of binding sites for a tissue-specific transcription factor in the vertebrate genome. J Mol Biol 266(2):231–245

    Article  CAS  PubMed  Google Scholar 

  • Truong VL et al (2018) Role of resveratrol in regulation of cellular defense systems against oxidative stress. BioFactors 44(1):36–49

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Turan D et al (2020) Evaluation of the neuroprotective potential of caffeic acid phenethyl ester in a cellular model of Parkinson’s disease. Eur J Pharmacol 883:173342

    Article  CAS  PubMed  Google Scholar 

  • Van Den Bossche K et al (2006) The quest for the mechanism of melanin transfer. Traffic 7(7):769–778

    Article  PubMed  Google Scholar 

  • Vince JE et al (2018) The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and-7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep 25(9):2339-2353. e2334

    Article  CAS  PubMed  Google Scholar 

  • Vradenburg G (2015) A pivotal moment in Alzheimer’s disease and dementia: how global unity of purpose and action can beat the disease by 2025. Expert Rev Neurother 15(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Walczak H (2011) TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev 244(1):9–28

    Article  CAS  PubMed  Google Scholar 

  • Walle T et al (2001) Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br J Clin Pharmacol 51(2):143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 86:879–896

    Article  CAS  PubMed  Google Scholar 

  • Wang K et al (2014) Protective effect of paeoniflorin on Aβ25–35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34(2):227–234

    Article  PubMed  Google Scholar 

  • Wang J et al (2016) Neuroprotective effect of several phytochemicals and its potential application in the prevention of neurodegenerative diseases. Geriatrics 1(4):29

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2017) Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. J Appl Toxicol 37(6):644–667

    Article  PubMed  Google Scholar 

  • Wang T-F et al (2022) Inhibition of nigral microglial activation reduces age-related loss of dopaminergic neurons and motor deficits. Cells 11(3):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welbat JU et al (2018) Neuroprotective properties of asiatic acid against 5-fluorouracil chemotherapy in the hippocampus in an adult rat model. Nutrients 10(8):1053

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson R, Tocher DR (1991) Lipid and fatty acid composition is altered in plaque tissue from multiple sclerosis brain compared with normal brain white matter. Lipids 26(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Wright JS (2002) Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct (thoechem) 591(1–3):207–217

    Article  CAS  Google Scholar 

  • Yang Y et al (2015) Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARγ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol 8(3):2484

    PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2021) Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington’s disease via suppressing MAPKs and NF-κB pathways in the striatum. Acta Pharmacol Sin 42(9):1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Yuan C-X et al (2008) Effects of traditional Chinese herbal medicine on the neurobehavioral manifestations and the activity of dopamine D2 receptor in corpora striatum of rats with levodopa-induced dyskinesias. Zhong Xi Yi Jie He Xue Bao 6(10):1024–1028

    Article  CAS  PubMed  Google Scholar 

  • Zeng K-W et al (2012) Schisandrin B exerts anti-neuroinflammatory activity by inhibiting the Toll-like receptor 4-dependent MyD88/IKK/NF-κB signaling pathway in lipopolysaccharide-induced microglia. Eur J Pharmacol 692(1–3):29–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2014) A review of experimental research on herbal compounds in amyotrophic lateral sclerosis. Phytother Res 28(1):9–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2016) Neuroprotective effects of theaflavins against oxidative stress-induced apoptosis in PC12 cells. Neurochem Res 41(12):3364–3372

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Institute for providing excellent support to complete this work.

Author information

Authors and Affiliations

Authors

Contributions

BS: writing original draft and preparation of figures; NR—helped in writing manuscript and referencing; CS—critically review and editing; AS: conceptualization, supervision, critical review, and editing. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Arti Singh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors give full consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, B., Rana, N., Singh, C. et al. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. Naunyn-Schmiedeberg's Arch Pharmacol (2024). https://doi.org/10.1007/s00210-024-03027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-024-03027-5

Keywords

Navigation