Skip to main content

Advertisement

Log in

Prevention of colistin-induced neurotoxicity: a narrative review of preclinical data

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Polymyxin E or colistin is an effective antibiotic against MDR Gram-negative bacteria. Due to unwanted side effects, the use of this antibiotic has been limited for a long time, but in recent years, the widespread of MDR Gram-negative bacteria infections has led to its reintroduction. Neurotoxicity and nephrotoxicity are the significant dose-limiting adverse effects of colistin. Several agents with anti-inflammatory and antioxidant properties have been used for the prevention of colistin-induced neurotoxicity. This study aims to review the preclinical studies in this field to prepare guidance for future human studies. The data was achieved by searching PubMed, Scopus, and Google Scholar databases. All eligible pre-clinical studies performed on neuroprotective agents against colistin-induced neurotoxicity, which were published up to September 2023, were included. Finally, 16 studies (ten in vitro and eight in vivo) are reviewed. Apoptosis (in 13 studies), inflammatory (in four studies), and oxidative stress (in 14 studies) pathways are the most commonly reported pathways involved in colistin-induced neurotoxicity. The assessed compounds include non-herbal (e.g., ascorbic acid, rapamycin, and minocycline) and herbal (e.g., curcumin, rutin, baicalein, salidroside, and ginsenoside) agents. Besides these compounds, some other measures like transplantation of mitochondria and the use of nerve growth factor and mesenchymal stem cells could be motivating subjects for future research. Based on the data from experimental (in vitro and animal) studies, a combination of colistin with neuroprotective agents could prevent or decrease colistin-induced neurotoxicity. However, well-designed randomized clinical trials and human studies are essential for demonstrating efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ajiboye T (2018) Colistin sulphate induced neurotoxicity: studies on cholinergic, monoaminergic, purinergic and oxidative stress biomarkers. Biomed Pharmacother 103:1701–1707

    Article  CAS  PubMed  Google Scholar 

  • Ammon H et al (1993) Mechanism of antiinflammatory actions of curcumine and boswellic acids. J Ethnopharmacol 38(2–3):105–112

    Article  Google Scholar 

  • Arjmand A et al (2023) Transplantation of healthy mitochondria into rat renal proximal tubular cells reduces colistin-induced mitochondrial dysfunction and cellular damage: An in vitro study. Preprint at https://assets.researchsquare.com/files/rs-3153224/v1/748c0615-7019-474a-b352-52abcdb5bc15.pdf?c=1691060852

  • Betts JW et al (2016) In vitro antibacterial activity of curcumin–polymyxin B combinations against multidrug-resistant bacteria associated with traumatic wound infections. J Nat Prod 79(6):1702–1706

    Article  CAS  PubMed  Google Scholar 

  • Bintang MAKM, Nopparat J, Srichana T (2023) In vivo evaluation of nephrotoxicity and neurotoxicity of colistin formulated with sodium deoxycholate sulfate in a mice model. Naunyn Schmiedebergs Arch Pharmacol 396(11):3243–3252

    Article  CAS  PubMed  Google Scholar 

  • Camargo Cet al (2021) Colistin neurotoxicity mimicking Guillain-Barré syndrome in a patient with cystic fibrosis: case report and review. Oxf Med Case Reports (9):omab080

  • Cao Y et al (2010) Neuroprotective effect of baicalin on compression spinal cord injury in rats. Brain Res 1357:115–123

    Article  CAS  PubMed  Google Scholar 

  • Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13(9):1007–1024

    Article  CAS  PubMed  Google Scholar 

  • Carroll RE et al (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res 4(3):354–364

    Article  CAS  Google Scholar 

  • Çelik H et al (2020) Neuroprotective effect of rutin against colistin-induced oxidative stress, inflammation and apoptosis in rat brain associated with the CREB/BDNF expressions. Mol Biol Rep 47(3):2023–2034

    Article  PubMed  Google Scholar 

  • Chen X et al (2008) Salidroside Attenuates Glutamate-Induced Apoptotic Cell Death in Primary Cultured Hippocampal Neurons of Rats 1238:189–198

    CAS  Google Scholar 

  • Cheng G et al (2012) Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 167(4):699–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z et al (2019) Neuroprotective effects of ginsenosides against cerebral ischemia. Molecules 24(6):1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuengsamarn S et al (2012) Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35(11):2121–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C et al (2016) Colistin-induced apoptosis of neuroblastoma-2a cells involves the generation of reactive oxygen species, mitochondrial dysfunction, and autophagy. Mol Neurobiol 53(7):4685–4700

    Article  CAS  PubMed  Google Scholar 

  • Dai C et al (2017a) Rapamycin confers neuroprotection against colistin-induced oxidative stress, mitochondria dysfunction, and apoptosis through the activation of autophagy and mTOR/Akt/CREB signaling pathways. ACS Chem Neurosci 9(4):824–837

    Article  Google Scholar 

  • Dai C et al (2017b) Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress. J Antimicrob Chemother 72(6):1635–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C et al (2018a) Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Mol Neurobiol 55(1):421–434

    Article  CAS  PubMed  Google Scholar 

  • Dai C et al (2018b) Molecular mechanisms of neurotoxicity induced by polymyxins and chemoprevention. ACS Chem Neurosci 10(1):120–131

    Article  PubMed  Google Scholar 

  • Dai C et al (2019) Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice. Mol Biol Rep 46(2):1963–1972

    Article  CAS  PubMed  Google Scholar 

  • Dai C et al (2020a) Polymyxins–curcumin combination antimicrobial therapy: Safety implications and efficacy for infection treatment. Antioxidants 9(6):506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C et al (2020b) Curcumin attenuates colistin-induced peripheral neurotoxicity in mice. ACS Infectious Diseases 6(4):715–724

    Article  CAS  PubMed  Google Scholar 

  • Dai C et al (2020c) Nerve growth factor confers neuroprotection against colistin-induced peripheral neurotoxicity. ACS Infectious Diseases 6(6):1451–1459

    Article  CAS  PubMed  Google Scholar 

  • Dalfino L et al (2015) Colistin-associated acute kidney injury in severely ill patients: a step toward a better renal care? A prospective cohort study. Clin Infect Dis 61(12):1771–1777

    Article  CAS  PubMed  Google Scholar 

  • de Almeida Alvarenga L et al (2018) Curcumin-a promising nutritional strategy for chronic kidney disease patients. Journal of Functional Foods 40:715–721

    Article  Google Scholar 

  • Dikmen M et al (2017) Neuritogenic activity of epigallocatechin gallate and curcumin combination on rat adrenal pheochromocytoma cells. Fresenius Environ Bull 26(7):4726–4733

    CAS  Google Scholar 

  • Dinda B et al (2017) Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 131:68–80

    Article  CAS  PubMed  Google Scholar 

  • Dumont FJ, Su Q (1995) Mechanism of action of the immunosuppressant rapamycin. Life Sci 58(5):373–395

    Article  CAS  Google Scholar 

  • Edrees NE et al (2018) Curcumin alleviates colistin-induced nephrotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chem Biol Interact 294:56–64

    Article  CAS  PubMed  Google Scholar 

  • Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85(S2):S67–S74

    Article  CAS  PubMed  Google Scholar 

  • Gao Y et al (2020) Ginsenoside Rg1 prevent and treat inflammatory diseases: a review. Int Immunopharmacol 87:106805

    Article  CAS  PubMed  Google Scholar 

  • Gen-Xiang M et al (2010) Protective role of salidroside against aging in a mouse model induced by D-galactose. Biomed Environ Sci 23(2):161–166

    Article  Google Scholar 

  • Hernández M, Wicz S, Corral RS (2016) Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E2 pathway induced during Trypanosoma cruzi infection. Phytomedicine 23(12):1392–1400

    Article  PubMed  Google Scholar 

  • Hu J et al (2016a) Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: protection by starch-desferal and minocycline. Free Radical Biol Med 97:418–426

    Article  CAS  Google Scholar 

  • Hu Y et al (2016b) Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep 13(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Jafari F, Elyasi S (2021) Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Rev Clin Pharmacol 14(9):1113–1131

    Article  CAS  PubMed  Google Scholar 

  • Jiang G-Z, Li J-C (2014) Protective effects of ginsenoside Rg1 against colistin sulfate-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 34(2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Jiang H et al (2013) Baicalin inhibits colistin sulfate-induced apoptosis of PC12 cells. Neural Regen Res 8(28):2597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S et al (2019) Detection of 13 ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K, 20 (S)-protopanaxadiol, and 20 (S)-protopanaxatriol) in human plasma and application of the analytical method to human pharmacokinetic studies following two week-repeated administration of red ginseng extract. Molecules 24(14):2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Set al (1998) Quantitative analysis of salidroside and lotaustralin in Rhodiola by gas chromatography. Zhongguo Zhong yao za zhi 23(6):365–366, 384

  • Kaur A, Sharma P, Capalash N (2018) Curcumin alleviates persistence of Acinetobacter baumannii against colistin. Sci Rep 8(1):1–11

    Article  Google Scholar 

  • Kim N, Cho S-G (2013) Clinical applications of mesenchymal stem cells. Korean J Intern Med 28(4):387

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirschner PB et al (1996) NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res 713(1–2):178–185

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Cha M, Lee BH (2020) Neuroprotective effect of antioxidants in the brain. Int J Mol Sci 21(19):7152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M et al (2008) Anti-fatigue effects of salidroside in mice. Journal of Medical Colleges of PLA 23(2):88–93

    Article  Google Scholar 

  • Liang W, Huang X, Chen W (2017) The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis 8(6):850

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim LM et al (2010) Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. The Journal of Human Pharmacology and Drug Therapy 30(12):1279–1291

    Article  CAS  Google Scholar 

  • Liu Y et al (2013) Ascorbic acid protects against colistin sulfate-induced neurotoxicity in PC12 cells. Toxicol Mech Methods 23(8):584–590

    Article  PubMed  Google Scholar 

  • Liu F et al (2018) Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep 39(3):1523–1531

    CAS  PubMed  Google Scholar 

  • Liu M et al (2020) Inhibition of resveratrol glucosides (REs) on advanced glycation endproducts formation (AGEs): inhibitory mechanism and structure-activity relationship 34(17):2490–2494

    CAS  Google Scholar 

  • Liu L et al (2017) Nerve growth factor protects against alcohol-induced neurotoxicity in PC12 cells via PI3K/Akt/mTOR pathway. Alcohol Alcohol 52(1):12–18

    Article  Google Scholar 

  • Lu Z et al (2017a) Salidroside attenuates colistin-induced neurotoxicity in RSC96 Schwann cells through PI3K/Akt pathway. Chem Biol Interact 271:67–78

    Article  CAS  PubMed  Google Scholar 

  • Lu Z et al (2017b) Salidroside attenuates colistin-induced neurotoxicity in RSC96 Schwann cells through PI3K/Akt pathway. Chem Biol Interact 271:67–78

    Article  Google Scholar 

  • Lykkesfeldt J, Michels AJ, Frei B (2014) Vitamin c Adv Nutr 5(1):16–18

    Article  PubMed  Google Scholar 

  • MacLaren G, Spelman D Polymyxins: An overview. In: UpToDate, Post TW (Ed), Wolters Kluwer. https://www.uptodate.com (Accessed on September 20, 2023.)

  • Magesh S, Chen Y, Hu L (2012) Small molecule modulators of K eap1-N rf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 32(4):687–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manni L et al (2013) Nerve growth factor: basic studies and possible therapeutic applications. Growth Factors 31(4):115–122

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Li Y, Yao N (2007) Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography. Journal of pharmaceutical and biomedical analysis 45(3):510–515

    Article  CAS  PubMed  Google Scholar 

  • Mmatli M et al (2020) Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: a systematic review of current reports. Msystems 5(6):e00783-e720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mnich K et al (2014) Nerve growth factor-mediated inhibition of apoptosis post-caspase activation is due to removal of active caspase-3 in a lysosome-dependent manner. Cell Death Dis 5(5):e1202–e1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabavi SF et al (2014) Curcumin and liver disease: from chemistry to medicine. Comprehensive Reviews in Food Science and Food Safety 13(1):62–77

    Article  CAS  PubMed  Google Scholar 

  • Nair S et al (2021) Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: role of mitochondria, inflammation, and reactive oxygen species. J Neurochem 158(1):59–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nang SC et al (2021) Rescuing the last-line polymyxins: achievements and challenges. Pharmacol Rev 73(2):679–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen N et al (2009) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 34(5):942–951

    Article  CAS  PubMed  Google Scholar 

  • Oliveira SL et al (2013) Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 83(1):76–89

    Article  PubMed  Google Scholar 

  • Öz Gergin Ö et al (2023) The neuroprotective effect of mesenchymal stem cells in colistin-induced neurotoxicity. Toxicol Mech Methods 33(2):95–103

    Article  PubMed  Google Scholar 

  • PA W (2020) Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing. 30th ed

  • Palmeri A et al (2016) Salidroside, a bioactive compound of Rhodiola rosea, ameliorates memory and emotional behavior in adult mice. J Alzheimers Dis 52(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Panche AN et al (2016) Flavonoids: an overview. J Nutr Sci 29(5):e47

  • Poirel L, Kieffer N, Nordmann P (2017) In vitro study of IS Apl1-mediated mobilization of the colistin resistance gene mcr-1. Antimicrob Agents Chemother 61(7):e00127-e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RL N and J L (2018) The use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs, 7 ed. CRC Press, Boca Raton

  • Salinas M et al (2003) Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem 278(16):13898–13904

    Article  CAS  PubMed  Google Scholar 

  • Sirijatuphat R et al (2015) Preliminary clinical study of the effect of ascorbic acid on colistin-associated nephrotoxicity. Antimicrob Agents Chemother 59(6):3224–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H-L et al (2018) Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway 13(1):128

    CAS  Google Scholar 

  • Song Let al (2017) A preclinical systematic review of ginsenoside-Rg1 in experimental Parkinson’s diseaseOxid Med Cell Longev 2163053

  • Sowndhararajan K et al (2018) Neuroprotective and cognitive enhancement potentials of baicalin: a review. Brain Sci 8(6):104

    Article  PubMed  PubMed Central  Google Scholar 

  • Spasov A et al (2000) A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 7(2):85–89

    Article  CAS  PubMed  Google Scholar 

  • Su R, Su W, Jiao Q (2019) NGF protects neuroblastoma cells against β-amyloid-induced apoptosis via the Nrf2/HO-1 pathway. FEBS Open Bio 9(12):2063–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Z et al (2019) Nerve growth factor prevents arsenic-induced toxicity in PC12 cells through the AKT/GSK-3β/NFAT pathway. J Cell Physiol 234(4):4726–4738

    Article  CAS  PubMed  Google Scholar 

  • Tasaki Y et al (2010) Meloxicam protects cell damage from 1-methyl-4-phenyl pyridinium toxicity via the phosphatidylinositol 3-kinase/Akt pathway in human dopaminergic neuroblastoma SH-SY5Y cells 1344:25–33

    CAS  Google Scholar 

  • Testing ECOAS (2022) Breakpoint tables for interpretation of MICs and zone diameters, version 12.0. EUCAST, Basel, Switzerland

  • Tian E et al (2019) Preventive effects of nerve growth factor against colistin-induced autophagy and apoptosis in PC12 cells. Toxicol Mech Methods 29(3):177–186

    Article  CAS  PubMed  Google Scholar 

  • Tohda C et al (2004) Aβ (25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, a metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 29(5):860–868

    Article  CAS  PubMed  Google Scholar 

  • Tsuji BT et al (2019) International consensus guidelines for the optimal use of the polymyxins: endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti‐infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP) 39(1):10–39

    Google Scholar 

  • Van Diermen D et al (2009) Monoamine oxidase inhibition by Rhodiola rosea L roots. Journal of ethnopharmacology 122(2):397–401

    Article  PubMed  Google Scholar 

  • Wagenlehner F et al (2021) Systematic Review on Estimated Rates of Nephrotoxicity and Neurotoxicity in Patients Treated with Polymyxins 27(5):671–686

    CAS  Google Scholar 

  • Wang B, Lin W, Zhu H (2021) Minocycline improves the recovery of nerve function and alleviates blood-brain barrier damage by inhibiting endoplasmic reticulum in traumatic brain injury mice model. European Journal of Inflammation 19:20587392211010896

    Article  CAS  Google Scholar 

  • Xiong Let al (2023) Piceatannol-3′-O-β-D-glucopyranoside attenuates colistin-induced neurotoxicity by suppressing oxidative stress via the NRF2/HO-1 pathway Biomed Pharmacother 161:114419

  • Xu X-Y et al (2018) Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 10(10):1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Wet al (2016) Curcumin protects neonatal rat cardiomyocytes against high glucose-induced apoptosis via PI3K/Akt signalling pathway J Diabetes Res 2016:4158591

  • Zhang L et al (2007) Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells. Eur J Pharmacol 564(1–3):18–25

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2010) Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. 57(5):547–555

    CAS  Google Scholar 

  • Zhang L, Jiang H, Hu Z (2011) Concentration-dependent effect of nerve growth factor on cell fate determination of neural progenitors. Stem Cells and Development 20(10):1723–1731

    Article  CAS  PubMed  Google Scholar 

  • Zhang L et al (2012) Salidroside protects PC12 cells from MPP+-induced apoptosis via activation of the PI3K/Akt pathway 50(8):2591–2597

    CAS  Google Scholar 

  • Zhang L et al (2016) p53 mediates colistin-induced autophagy and apoptosis in PC-12 cells 60(9):5294–5301

    CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49(11):5165–5170

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y et al (2011) Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway 30(10):809–819

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Setareh Soroudi and Ghazal Mousavi searched the databases and wrote the manuscript. Fatemeh Jafari reviewed and edited the manuscript. Sepideh Elyasi defined the manuscript’s subject and finalized the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding author

Correspondence to Sepideh Elyasi.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soroudi, S., Mousavi, G., Jafari, F. et al. Prevention of colistin-induced neurotoxicity: a narrative review of preclinical data. Naunyn-Schmiedeberg's Arch Pharmacol (2023). https://doi.org/10.1007/s00210-023-02884-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00210-023-02884-w

Keywords

Navigation