Skip to main content

Advertisement

Log in

A review: traditional herbs and remedies impacting pathogenesis of Parkinson’s disease

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons, leading to misbalance and loss of coordination. Current therapies are claimed only for symptomatic relief, on long-term use, which causes alteration in basal ganglia, and give rise to various adverse effects like dyskinesia and extra pyramidal side effects, which is reversed and proved to be attenuated with the help of various herbal approaches. Therefore, in order to attenuate the dopaminergic complications, focus of current research has been shifted from dopaminergic to non-dopaminergic strategies. Herbs and herbal remedies seems to be a better option to overcome the complications associated with current dopaminergic therapies. In recent years, various herbs and herbal remedies based on Ayurveda, traditional Chinese and Korean remedies, have become the target of various researches. These herbs and their bioactive compound are being extensively used to treat PD in India, China, Japan, and Korea. The major focus of this current review is to analyze preclinical studies with reference to various herbs, bioactive compounds, and traditional remedies for the management of Parkinson disorder, which will give an insight towards clinical trials.

Highlights

  • Current Therapies and its failures in the treatment of Parkinson Disorder.

  • Traditional claims based on Indian, Chinese and Korean medicine system.

  • Traditional formulation with their experimental details and recipes.

  • Herbs snooped for their impact on Dopaminergic and Non-Dopaminergic signalling.

  • Clinical claims on various herbs possessing anti-parkinsonian activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

It is a brief communication which include the proposed hypothesis, so no scientific or experimental data was provided.

Abbreviations

PD:

Parkinson Disease

DA:

Dopamine

l-DOPA:

Levodopa

UPDRS:

Unified Parkinson’s Disease Rating Scale

SNc :

Substantia nigra pars compacta

WHO:

World Health Organization

TCM :

Traditional Chinese medicine

GABA :

γ-Aminobutyric acid

GPi :

Globus pallidus interna

SNpr :

Substantia nigra pars reticulata

GPe :

Globus pallidus externa

STN:

Subthalamic nucleus

mRNA:

Messenger RNA

NMDA:

N-methyl-d-aspartate receptor

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

NADPH:

Nicotinamide adenine dinucleotide phosphate

ECS :

Endogenous cannabinoid system

LID :

Levodopa-induced dyskinesia

COMT:

Catechol-O-methyltransferase

MAO:

Monoamine oxidase

ADL :

Activities of daily living

SMA:

Spontaneous motor activity

MPTP :

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MPP+ :

1-Methyl-4-phenylpyridinium

DAT :

Dopamine transporter

NET :

Noradrenaline transporter

CHO:

Chinese hamster ovary

BDNF:

Brain-derived neurotrophic factor

GDNF:

Glial cell line–derived neurotrophic factor

NGF:

Nerve growth factor

6-OHDA :

6-Hydroxydopamine

MMP :

Mitochondrial membrane potential

PAF :

Potent platelet-activating factor

CNS:

Central nervous system

ROS:

Reactive oxygen species

CAT:

Catalase

SOD:

Superoxide dismutase

TNF-α :

Tumor necrosis factor-alpha

IL-β :

Interleukin-1 beta

NO:

Nitric oxide

COX:

Cyclooxygenase

RT-PCR :

Reverse transcription polymerase chain reaction

LPS :

Lipopolysaccharide

GAPDH :

Glyceraldehyde-3-phosphate dehydrogenase

AD:

Alzheimer’s disease

References

  • Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) A Neuroprotective effect of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    Article  PubMed  Google Scholar 

  • Ahmed I, Bose SK, Pravese N, Ramlackhansingh A, Turkheimer F, Hotton G, Hammers A, Brooks DJ (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134:979–986

    Article  PubMed  Google Scholar 

  • Alberio T, Lopiano L, Fasano M (2012) Cellular models to investigate biochemical pathways in Parkinson’s disease. Febs J 279:1146–1155

    Article  CAS  PubMed  Google Scholar 

  • Alfinito PD, Wang SP, Manzino L, Rijhsinghani S, Zeevalk GD, Sonsalla PK (2003) Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigraand striatum, respectively. J Neurosci 23:10982–10987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amro MS, Teoh SL, Norzana AG, Srijit D (2018) The potential role of herbal products in the treatment of Parkinson’s disease. Clin Ter 169:e23-33

    CAS  PubMed  Google Scholar 

  • An H, Kim IS, Koppula S, Kim BW, Park PJ, Lim BO, Choi WS, Lee KH, Choi DK (2010) Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J Ethnopharmacol 130:290–298

    Article  PubMed  Google Scholar 

  • Ayajuddin M, Das A, Phom L, Modi P, Chaurasia R, Koza Z, Thepa A, Jamir N, Singh PR, Longkumer S, Yenisetti PLSC. Parkinson’s Disease: Insights from Drosophila Model. In: Perveen, FK, editor. Drosophila melanogaster - Model for Recent Advances in Genetics and Therapeutics [Internet]. London: IntechOpen; 2018 [cited 2022 Mar 05]. Available from:https://www.intechopen.com/chapters/57879, https://doi.org/10.5772/intechopen.72021

  • Bae N, Ahn T, Chung S, Oh MS, Ko H, Oh H, Yang HO (2011) The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson’s disease. J Ethnopharmacol 134:313–322

    Article  PubMed  Google Scholar 

  • Bido S, Marti M, Morari M (2011) Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. Neurochem, J 118:1043–1055

    Article  CAS  Google Scholar 

  • Binde CD, Tvete IF, Gåsemyr J, Natvig B, Klemp M (2018) A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson’s disease. Br J Clin Pharmacol 84:1917–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bove J, Perier C (2012) neurotoxin-based models of Parkinson’s disease. Neurosci 211:51–76

    Article  CAS  Google Scholar 

  • Braak H, Del Tredici K (2008) Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurol 212:226–229

    Article  PubMed  Google Scholar 

  • Bridi R, Crossetti FP, Steffen VM, Henriques AT (2001) The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 15:449–451

    Article  CAS  PubMed  Google Scholar 

  • Bureau G, Longpré F, Martinoli MG (2008) Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 86:403–410

    Article  CAS  PubMed  Google Scholar 

  • Cass H (2004) Herbs for the Nervous System. Ginkgo, Kava, Valerian, Passionflower. Semin Integr Med 2:82-88

  • Chao J, Yu MS, Ho YS, Wang M, Chang RC (2008) Dietary oxyresveratrol prevents Parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med 45:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC, Zhao CH (2003) Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 473:1–7

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Lin SC, Chan MH (2011) Protective and restorative effects of magnolol on neurotoxicity in mice with 6-hydroxydopamine-induced hemiParkinsonism. J Neuro-Degener Dis 8:364–374

    Article  CAS  Google Scholar 

  • Cheng Y, He G, Mu X, Zhang T, Li X, Hu J, Xu B, Du G (2008) Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. Neurosci Lett 441:16–20

    Article  CAS  PubMed  Google Scholar 

  • Choi JG, Kim HG, Kim MC, Yang WM, Huh Y, Kim SY, Oh MS (2011) Polygalae radix inhibits toxin-induced neuronal death in the Parkinson’s disease models. J Ethnopharmacol 134:414–421

    Article  PubMed  Google Scholar 

  • Conway KA, Rochet JC, Bieganski RM, Lansbury PT (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Sci 294:1346–1349

    Article  CAS  Google Scholar 

  • Cutillas B, Ambrosio S, Unzeta M (2002) Neuroprotective effect of the monoamine oxidase inhibitor PF 9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] on rat nigral neurons after 6-hydroxydopamine-striatal lesion. Neurosci Lett 29:165–168

    Article  Google Scholar 

  • Dawson TM, Dawson VL (2003) Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J Clin Invest 111:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurol 68:384–396

    Article  CAS  Google Scholar 

  • Drechsel DA, Patel M (2009) Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism. Toxicol Sci 112:427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22:1379–1389

    Article  PubMed  Google Scholar 

  • Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Dis: off J Mov Disord 23:S497-508

    Article  Google Scholar 

  • Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33:767–785

    Article  CAS  PubMed  Google Scholar 

  • Forloni G, Bertani I, Calella AM, Thaler F, Invernizzi R (2000) α-Synuclein and Parkinson’s disease selective neurodegenerative effect of α-synuclein fragment on dopaminergic neurons in vitro and in vivo. Ann Neurol 47:632–640

    Article  CAS  PubMed  Google Scholar 

  • Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RM, Seppi K, Coelho M, Sampaio C (2018) Movement Disorder Society Evidence-Based Medicine Committee. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 33:1248–1266

    Article  CAS  PubMed  Google Scholar 

  • Foyet HS, Hritcu L, Ciobica A, Stefan M, Kamtchouing P, Cojocaru D (2011) Methanolic extract of Hibiscus asper leaves improves spatial memory deficits in the 6-hydroxydopamine-lesion rodent model of Parkinson’s disease. J Ethnopharmacol 133:773–779

    Article  PubMed  Google Scholar 

  • Fujikawa T, Kanada N, Shimada A, Ogata M, Suzuki I, Hayashi I, Nakashima K (2005a) Effect of sesamin in Acanthopanax senticosus HARMS on behavioral dysfunction in rotenone-induced Parkinsonian rats. Biol Pharm Bull 28:169–172

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa T, Miguchi S, Kanada N, Nakai N, Ogata M, Suzuki I, Nakashima K (2005b) Acanthopanax senticosus Harms as a prophylactic for MPTP-induced Parkinson’s disease in rats. J Ethnopharmacol 97:375–381

    Article  PubMed  Google Scholar 

  • Galuppo M (2013) Anti-inflammatory and anti-apoptotic effects of (RS)-glucoraphanin bioactivated with myrosinase in murine sub-acute and acute MPTP-induced Parkinson’s disease. Bioorg Med Chem 21:5532–5547

    Article  CAS  PubMed  Google Scholar 

  • Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY (2012) Dopamine induced neurodegeneration in a PINK1 model of Parkinson’s disease. Plos one. 25;7(5):e37564.

  • Gerlach M, Bartoszyk GD, Riederer P, Dean O, van den Buuse M (2011) Role of dopamine D3 and serotonin 5-HT1A receptors in L:-Dopa-induced dyskinesias and effects of sarizotan in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J Nrural Transm 118:1733–1742

    Article  CAS  Google Scholar 

  • Ghanim H, Sia CL, Abuaysheh S, Korzeniewski K, Patnaik P, Marumganti A, Chaudhuri A, Dandona P (2010) An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J Clin Endocrinol Metab 95:E1–E8

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan S, Jiang B, Bao YM, An LJ (2006) Protocatechuic acid suppresses MPP+- induced mitochondrial dysfunction and apoptotic cell death in PC12 cells. Food Chem Toxicol 44:1659–1666

    Article  CAS  PubMed  Google Scholar 

  • Haleagrahara N, Ponnusamy K (2010) Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced Parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci 35:41–47

    Article  CAS  PubMed  Google Scholar 

  • Haleagrahara N, Siew CJ, Mitra NK, Kumari M (2011) Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett 500:139–143

    Article  CAS  PubMed  Google Scholar 

  • Han B (2013) Neuroprotective effect of hydroxysafflor yellowA on 6-hydroxydopamine-induced Parkinson’s disease in rats. Eu J Pharmacol 714:83–88

    Article  CAS  Google Scholar 

  • Haobam R, Sindhu KM, Chandra G, Mohanakumar KP (2005) Swim-test as a function of motor impairment in MPTP model of Parkinson’s disease: a comparative study in two mouse strains. Behav Brain Res 163:159–167

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection. Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Hosamani MR (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicol 30:977–985

    Article  CAS  Google Scholar 

  • Hritcu L, Foyet HS, Stefan M, Mihasan M, Asongalem AE, Kamtchouing P (2011) Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J Ethnopharmacol 137:585–591

    Article  PubMed  Google Scholar 

  • Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22(1):11-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang DS, Kim HG, Kwon HJ, Cho JH, Lee CH, Lee JM, Jang JB, Kim YS, Lee KS, Oh MS (2011) Dangguijakyak-san, a medicinal herbal formula, protects dopaminergic neurons from 6-hydroxydopamine-induced neurotoxicity. J Ethnopharmacol 133(2):934–939

  • Hwang DS, Kim HG, Jang JB, Oh MS (2013) Dangguijakyak-San Protects against 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neuronal damage via anti-inflammatory action. Evid-Based Complemen Alternat Med

  • Ikeda Y, Tsuji S, Satoh A, Ishikura M, Shirasawa T, Shimizu T (2008) Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 107:1730–1740

    Article  CAS  PubMed  Google Scholar 

  • Im HI, Joo WS, Nam E, Lee ES, Hwang YJ, Kim YS (2005) Baicalein prevents 6-hydroxydopamine-induced dopaminergic dysfunction and lipid peroxidation in mice. J Pharmacol Sci 98:185–189

    Article  CAS  PubMed  Google Scholar 

  • Isacson O (2004) Problems and solutions for circuits and synapses in Parkinson’s disease. Neuron 43:165–168

    Article  CAS  PubMed  Google Scholar 

  • Jain SK (1994) Ethnobotany and research on medicinal plants in India. Ciba Found Symp 185:153–168

    CAS  PubMed  Google Scholar 

  • Jaisin Y, Thampithak A, Meesarapee B, Ratanachamnong P, Suksamrarn A, Phivthong-Ngam L, Phumala-Morales N, Chongthammakun S, Govitrapong P, Sanvarinda Y (2011) Curcumin I protects the dopaminergic cell line SH-SY5Yfrom 6 hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis. Neurosci Lett 489:192–196

    Article  CAS  PubMed  Google Scholar 

  • Jakubauskiene E, Janaviciute V, Peciuliene I, Söderkvist P, Kanopka A (2012) G/A polymorphism in intronic sequence affects the processing of MAO-B gene in patients with Parkinson disease. FEBS Lett 586:3698–3704

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S38

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Tu PF (2009) Analysis of chemical constituents in “Cistanche” species. J Chromatogr A 1216:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Kim JJ, Kim DY, Kim MK, Oh NH, Koppula S, Park PJ, Choi DK, Shin YK, Kim IH, Kang TB (2012) Acorus gramineus inhibits microglia mediated neuroinflammation and prevents neurotoxicityin1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson’sdisease. J Ethnopharmacol 144:506–513

    Article  CAS  PubMed  Google Scholar 

  • Jin F, Wu Q, Lu YF, Gong QH, Shi JS (2008) Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol 600:78–82

    Article  CAS  PubMed  Google Scholar 

  • Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, Power C (2001) Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann Neurol 49:650–658

    Article  CAS  PubMed  Google Scholar 

  • Ju MS, Kim HG, Choi JG, Ryu JH, Hur J, Kim YJ, Oh MS (2010a) Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson’s disease models. Food Chem Toxicol 48:2037–2044

    Article  CAS  PubMed  Google Scholar 

  • Ju MS, Lee P, Kim HG, Lee KY, Hur J, Cho SH, Sung SH, Oh MS (2010b) Protective effects of standardized Thuja orientalis leaves against 6- hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Toxicol in Vitro 24:759–765

    Article  CAS  PubMed  Google Scholar 

  • Jung HW, Jin GZ, Kim SY, Kim YS, Park YK (2009) Neuroprotective effect of methanol extract of Phellodendri Cortex against 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis in PC-12 cells. Cell Biol Int 33:957–963

    Article  CAS  PubMed  Google Scholar 

  • Kabuto H, Yamanushi TT (2011) Effects of zingerone [4-(4-hydroxy-3- methoxyphenyl)-2-butanone] and eugenol [2-methoxy-4-(2-propenyl) phenol] on the pathological progress in the 6-hydroxydopamine-induced Parkinson’s disease mouse model. Neurochem Res 36:2244–2249

    Article  CAS  PubMed  Google Scholar 

  • Kabuto H, Nishizawa M, Tada M, Higashio C, Shishibori T, Kohno M (2005) Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6- hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum. Neurochem Res 30:325–332

    Article  CAS  PubMed  Google Scholar 

  • Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B (2003) 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 371:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, Chen J, Xu Z, Li H, Wang B (2007) Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicol in Vitro 21:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Katiyar CK (2010) Ayurvedic processed seeds of nux-vomica: neuropharmacological and chemical evaluation. Fitoterapia 81:190–195

    Article  CAS  PubMed  Google Scholar 

  • Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 75:1672–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami Z, Kanno H, Ueki T, Terawaki K, Tabuchi M, Ikarashi Y, Kase Y (2009) Neuroprotective effects of yokukansan, a traditional Japanese medicine, on glutamate-mediated excitotoxicity in cultured cells. Neurosci 159:1397–1407

    Article  CAS  Google Scholar 

  • Kawanabe T, Yoritaka A, Shimura H, Oizumi H, Tanaka S, Hattori N (2010) Successful treatment with Yokukansan for behavioral and psychological symptoms of Parkinsonian dementia. Prog Neuropsychopharmacol Biol Psychiatry 34:284–287

    Article  PubMed  Google Scholar 

  • Khan MM, Hoda MN, Ishrat T, Ahmad A, Khan MB, Khuwaja G, Raza SS, Safhi MM, Islam F (2010) Amelioration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced behavioural dysfunction and oxidative stress by pycnogenol in mouse model of Parkinson’s disease. Behav Pharmacol 21:563–571

    Article  CAS  PubMed  Google Scholar 

  • Khurana N, Gajbhiye A (2013) Ameliorative effect of “Sida cordifolia” in rotenone induced oxidative stress model of Parkinson’s disease. Neurotoxicol 39:57–64

    Article  CAS  Google Scholar 

  • Kim IS, Koppula S, Park PJ, Kim EH, Kim CG, Choi WS, Lee KH, Choi DK (2009) Chrysanthemum morifolium Ramat (CM) extract protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. J Ethnopharmacol 126:447–454

    Article  PubMed  Google Scholar 

  • Kim HG, Ju MS, Shim JS, Kim MC, Lee SH, Huh Y, Kim SY, Oh MS (2010) Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Br J Nutr 104:8–16

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Choi DK, Jung HJ (2011) Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Mol 16:5349–5361

    Article  CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. New Eng J Med 318:876–880

    Article  CAS  PubMed  Google Scholar 

  • Kopall SR (2012) SF-6 attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of Parkinson disease. J Ethnopharmacol 143:686–694

    Article  Google Scholar 

  • Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A (2013) The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 28:311–318

    Article  PubMed  Google Scholar 

  • Kumar K, Sharma S, Kumar P, Deshmukh R (2013) Therapeutic potential of GABAB receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 110:174–184

    Article  CAS  PubMed  Google Scholar 

  • Lahaie-Collins V, Bournival J, Plouffe M, Carange J, Martinoli MG (2008) Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+- induced oxidative stress. Oxid Med Cell Longev 1:54–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Lau YS, Mouradian MM (1993) Protection against acute MPTP-induced dopamine depletion in mice by adenosine A1 agonist. J Neurochem 60:768–771

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Noh YH, Kim YS, Kim KY, Chung YH, Lee WB, Kim SS (2005) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SHSY5Y cells. Eu J Cell Biol 84:897–905

    Article  CAS  Google Scholar 

  • Lee CH, Hwang DS, Kim HG, Oh H, Park H, Cho JH, Lee JM, Jang JB, Lee KS, Oh MS (2010) Protective effect of Cyperi rhizoma against 6-hydroxydopamineinduced neuronal damage. J Med Food 13:564–571

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Kim CS, Lee YJ (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem Toxicol 49:271–280

    Article  CAS  PubMed  Google Scholar 

  • Li S, Pu XP (2011) Neuroprotective effect of kaempferol against a 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol Pharm Bull 34:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Li FQ, Cheng XX, Liang XB, Wang XH, Xue B, He QH, Wang XM, Han JS (2003) Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F on dopaminergic neurons. Exp Neurol 179:28–37

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Ma HB, Ma ZQ, Li LF, Xu CL, Qu R, Ma SP (2010a) Ameliorative and neuroprotective effect in MPTP model of Parkinson’s disease by Zhen-Wu-Tang (ZWT), a traditional Chinese medicine. J Ethnopharmacol 130:19–27

    Article  PubMed  Google Scholar 

  • Li X, Li Y, Chen J, Sun J, Sun X, Kang X (2010b) Tetrahydroxystilbene glucoside attenuates MPP (+)-induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation. Neurosci Lett 483:1–5

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ye X, Sun X, Liang Q, Tao L, Kang X, Chen J (2011) Salidroside protects against MPP (+)-induced apoptosis in PC12 cells by inhibiting the NO pathway. Brain Res 1382:9–18

    Article  CAS  PubMed  Google Scholar 

  • Li XZ, Zhang SN, Liu SM, Lu F (2013) (2013) Recent advances in herbal medicines treating Parkinson’s disease. Fitoterapia 84:273–285

    Article  CAS  PubMed  Google Scholar 

  • Li SD, Yi L, Yang MH (2012) Effects of Bushen Huoxue Yin on brain NF-KB and NO content in the parkinson's disease model mouse. Journal of Traditional Chinese Medicine 32(1):67–70

  • Liang Z, Shi F, Wang Y, Lu L, Zhang Z, Wang X (2011) Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci Lett 497:104–109

    Article  CAS  PubMed  Google Scholar 

  • Lin WM, Zhang YM, Moldzio R, Rausch WD (2007) Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J Neural Transm Suppl 72:105–112

  • Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ (2006) Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 148:314–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Kou JP, Yu BY (2011) Ginsenoside Rg1 protects against hydrogen peroxide-induced cell death in PC12 cells via inhibiting NF-kappaB activation. Neurochem Int 58:119–125

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhang J, Shi X, Miao S, Bi L, Zhang S, Yang Q, Zhou X, Zhang M, Xie Y, Miao Q (2014) Neuroprotective effects of tetramethylpyrazine against dopaminergic neuron injury in a rat model of Parkinson’s disease induced by MPTP. Int J Biol Sci 10:350

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo FC, Wang SD, Qi L, Song JY, Lv T, Bai J (2011) Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J Ethnopharmacol 133:448–453

    Article  CAS  PubMed  Google Scholar 

  • Ma ZG, Wang J, Jiang H, Liu TW, Xie JX (2007) Myricetin reduces 6-hydroxydopamine-induced dopamine neuron degeneration in rats. NeuroReport 18:1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Manyam BV (1990) Paralysis agitans and levodopa in “Ayurveda”: ancient Indian medical treatise. Mov Disord 5:47–58

    Article  CAS  PubMed  Google Scholar 

  • Manyam BV, Sanchez-Ramos JR (1999) Traditional and complementary therapies in Parkinson’s disease. Adv Neurol 80:565

    CAS  PubMed  Google Scholar 

  • Manyam BV, Dhanasekaran M, Hare TA (2004) Effect of antiparkinson drug HP-200 (Mucuna pruriens) on the central monoaminergic neurotransmitters. Phytother Res 18:97–101

    Article  PubMed  Google Scholar 

  • Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393

    Article  CAS  PubMed  Google Scholar 

  • Mela F, Marti M, Bido S, Cenci MA, Morari M (2012) In vivo evidence for a differential contribution of striatal and nigral D1 and D2 receptors to L-DOPA induced dyskinesia and the accompanying surge of nigral amino acid levels. Neurobiol Dis 45:573–582

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, Li Z, Liu S (2007) Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci 25:509–514

    Article  CAS  PubMed  Google Scholar 

  • Mercer LD, Kelly BL, Horne MK, Beart PM (2005) Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem Pharmacol 69:339–345

    Article  CAS  PubMed  Google Scholar 

  • Metzer WS, Rodrigues FB (2019) "Managing treatment fluctuations in Parkinson disease:“On” again–,“off” again.": 597–598

  • Milioli EM, Cologni P, Santos CC, Marcos TD, Yunes VM, Fernandes MS, Schoenfelder T, Costa-Campos L (2007) Effect of acute administration of hydroalcohol extract of Ilex paraguariensis St Hilaire (Aquifoliaceae) in animal models of Parkinson’s disease. Phytother Res 21:771–776

    Article  CAS  PubMed  Google Scholar 

  • Mo J, Zhang H, Yu LP, Sun PH, Jin GZ, Zhen X (2010) l-Stepholidine reduced l-DOPA-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson’s disease. Neurobiol Aging 31:926–936

    Article  CAS  PubMed  Google Scholar 

  • Mohanasundari M, Sabesan M (2007) Modulating effect of Hypericum perforatum extract on astrocytes in MPTP induced Parkinson’s disease in mice. Eur Rev Med Pharmacol Sci 11:17–20

    CAS  PubMed  Google Scholar 

  • Molina-Jiménez MF, Sánchez-Reus MI, Andres D, Cascales M, Benedi J (2004) Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain Res 1009:9–16

    Article  PubMed  Google Scholar 

  • Mu X, He G, Cheng Y, Li X, Xu B, Du G (2009) Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental Parkinsonism in vivo and in vitro. Pharmacol Biochem Behav 92:642–648

    Article  CAS  PubMed  Google Scholar 

  • Mu X, He GR, Yuan X, Li XX, Du GH (2011) Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol Biochem Behav 98:286–291

    Article  CAS  PubMed  Google Scholar 

  • Muller T (2020) Entacapone/tolcapone/opicapone for treating Parkinson’s disease. Neuro Psycho Pharmacother 1–8. https://doi.org/10.1007/978-3-319-56015-1_230-1

  • Nagashayana N (2000) Association of L-DOPA with recovery following Ayurveda medication in Parkinson’s disease. J Neurol Sci 176:124–127

    Article  CAS  PubMed  Google Scholar 

  • Ory-Magne F, Corvol JC, Azulay JP, Bonnet AM, Brefel-Courbon C, Damier P, Dellapina E, Destée A, Durif F, Galitzky M, Lebouvier T (2014) Withdrawing amantadine in dyskinetic patients with Parkinson disease The AMANDYSK trial. Neurol 82:300–307

    Article  CAS  Google Scholar 

  • Park SH, Hwang MS, Park HJ, Shin HK, Baek JU, Choi BT (2018) Herbal prescriptions and medicinal herbs for Parkinson-related rigidity in Korean medicine: identification of candidates using text mining. J Altern Complement Med 24:733–740

    Article  PubMed  Google Scholar 

  • Parkinson Study Group (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 59:1937–1943

    Article  Google Scholar 

  • Picconi B, Piccoli G, Calabresi P (2012) Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol 970:553–572

    Article  CAS  PubMed  Google Scholar 

  • Przedborski SV, Jackson-Lewis NAB (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    Article  CAS  PubMed  Google Scholar 

  • Qin R, Li X, Li G, Tao L, Li Y, Sun J, Kang X, Chen J (2011) Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation. Toxicol Lett 202:1–7

    Article  CAS  PubMed  Google Scholar 

  • Quraishy SA (2012) Protective effects of Portulaca oleracea against rotenone mediated depletion of glutathione in the striatum of rats as an animal model of Parkinson’s disease. Pest Biochem Physiol 103:108–114

    Article  Google Scholar 

  • Radad K, Moldzio R, Taha M, Rausch WD (2009) Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res 23:696–700

    Article  CAS  PubMed  Google Scholar 

  • RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S (2009) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373

    Article  CAS  PubMed  Google Scholar 

  • Rajendra Kopalli S, Koppula S, Young Shin K, Noh SJ, Jin Q, Yeon Hwang B, Suh YH (2012) SF-6 attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of Parkinson’s disease. J Ethnopharmacol 143:686–694

    Article  CAS  PubMed  Google Scholar 

  • Rojas P, Rojas C, Ebadi M, Montes S, Monroy-Noyola A, Serrano-García N (2004) EGb761 pretreatment reduces monoamine oxidase activity in mouse corpus striatum during 1-methyl-4-phenylpyridinium neurotoxicity. Neurochem Res 29:1417–1423

    Article  CAS  PubMed  Google Scholar 

  • Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E (2010) S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced Parkinsonism in mice. J Nutr Biochem 22:937–944

    Article  PubMed  Google Scholar 

  • Ryu HW (2013) Amurensin G induces autophagy and attenuates cellular toxicities in a rotenone model of Parkinson’s disease. Biochem Biophys Res Commun 433:121–126

    Article  CAS  PubMed  Google Scholar 

  • Saklani A, Kutty SK (2008) Plant-derived compounds in clinical trials. Drug Discov Today 13:3–4

    Article  Google Scholar 

  • Samoylenko V, Rahman MM, Tekwani BL, Tripathi LM, Wang YH, Khan SI, Khan IA, Miller LS, Joshi VC, Muhammad I (2010) Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson's disease. J Ethnopharmacol 127(2):357–367

  • Sanchez-Reus MI, Del Rio MG, Iglesias I, Elorza M, Slowing K, Benedi J (2007) Standardized Hypericum perforatum reduces oxidative stress and increases gene expression of antioxidant enzymes on rotenone-exposed rats. Neuropharmacol 52:606–616

    Article  CAS  Google Scholar 

  • Sapkota K, Kim S, Park SE, Kim SJ (2011) Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y. Cell Mol Neurobiol 31:213–223

    Article  PubMed  Google Scholar 

  • Schapira AH (2007) Treatment options in the modern management of Parkinson disease. Arch Neurol 64:1083–1088

    Article  PubMed  Google Scholar 

  • Schapira AH, Olanow CW (2004) Neuroprotection in Parkinson disease. Jama-J Am Med Assoc 291:358–364

    Article  CAS  Google Scholar 

  • Schlachetzki J, Marxreiter F, Regensburger M, Kulinich A, Winner B, Winkler J (2014) Increased tyrosine hydroxylase expression accompanied by glial changes within the non-lesioned hemisphere in the 6-hydroxydopamine model of Parkinson’s disease. Restor Neurol Neurosci 32:447–462

    CAS  PubMed  Google Scholar 

  • Schuler F, Casida JE (2001) Functional coupling of PSST and ND1 subunits in NADH: ubiquinone oxidoreductase established by photoaffinity labeling. Biochim Biophys Acta 1506:79–87

    Article  CAS  PubMed  Google Scholar 

  • Schwarz M, J (2003) Activities of extract and constituents of Banisteriopsis caapi relevant to parkinsonism. Pharmacol Biochem Behav 75:627–633

    Article  CAS  PubMed  Google Scholar 

  • Sengupta T, Vinayagam J, Nagashayana N, Gowda B, Jaisankar P, Mohanakumar KP (2011) AntiParkinsonian effects of aqueous methanolic extract of Hyoscyamus niger seeds result from its monoamine oxidase inhibitory and hydroxyl radical scavenging potency. Neurochem Res 36:177–186

    Article  CAS  PubMed  Google Scholar 

  • Serrano-Dueñas M, Cardozo-Pelaez F, Sánchez-Ramos JR (2001) Effects of Banisteriopsis caapi extract on Parkinson’s disease. Sci Rev Altern Med 5:127–132

    Google Scholar 

  • Shim JS, Kim HG, Ju MS, Choi JG, Jeong SY, Oh MS (2009) Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J Ethnopharmacol 126:361–365

    Article  PubMed  Google Scholar 

  • Siddique YH (2013) GC–MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Food Chem Toxicol 55:29–35

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Pillay V, Choonara YE (2007) Advances in the treatment of Parkinson’s disease. Prog Neurobiol 81:29–44

    Article  CAS  PubMed  Google Scholar 

  • Singhal B (2003) Epidemiol and Treat Parkinson’s Dis in India 9:105–109

    Google Scholar 

  • Song JX, Shaw PC, Sze CW, Tong Y, Yao XS, Ng TB, Zhang YB (2010) Chrysotoxine, a novel bibenzyl compound, inhibits 6-hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-kappaB modulation. Neurochem Int 57:676–689

    Article  CAS  PubMed  Google Scholar 

  • Song JX, Sze SC, Ng TB, Lee CK, Leung GP, Shaw PC, Tong Y, Zhang YB (2012) Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? J Ethnopharmacol 139:698–711

    Article  CAS  PubMed  Google Scholar 

  • Southgate J (2001) A bumper year for launches bucks the downward trend. ScripMag 78:80–81

    Google Scholar 

  • Sriraksa N, Wattanathorn J, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol K (2011) Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med. -1-9. https://doi.org/10.1155/2012/823206

  • Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53:S61–S72

    Article  CAS  PubMed  Google Scholar 

  • Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, Duan M, Zhou Z, Wang SQ (2008) Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells. Int J Biochem Cell Biol 40:409–422

    Article  CAS  PubMed  Google Scholar 

  • Tian LL, Wang XJ, Sun YN, Li CR, Xing YL, Zhao HB, Duan M, Zhou Z, Wang SQ (2011) Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Eu J Pharmacol 660:283–290

    Article  Google Scholar 

  • Wang S (2013) Isolation, characterization, and neuroprotective activities of sesquiterpenes from Petasites japonicas. Food Chem 141:2075–2082

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Xu JX (2005) Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci Res 51:129–138

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li WW, Cai DF, Yang R (2007) Protecting effect of Cistanche extracts on MPP+-induced injury of the Parkinson’s disease cell model. Chin J Integr Med 5:407

    Article  Google Scholar 

  • Wang P, Niu L, Gao L, Li WX, Jia D, Wang XL, Gao GD (2010) Neuroprotective effect of gypenosides against oxidative injury in the substantia nigra of a mouse model of Parkinson’s disease. J Int Med Res 38:1084–1092

    Article  CAS  PubMed  Google Scholar 

  • Wichmann T, Dostrovsky JO (2011) Pathological basal ganglia activity in movement disorders. Neurosci 198:232–244

    Article  CAS  Google Scholar 

  • Wood TK, McDermott KW, Sullivan AM (2005) Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. J Neurosci Res 80:759–766

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Chen X, Huang Q, Fang D, Li G, Zhang G (2012) Toxicity of raw and processed roots of “Polygonum multiflorum.” Fitoterapia 83:469–475

    Article  CAS  PubMed  Google Scholar 

  • Xu BB, Liu CQ, Gao X, Zhang WQ, Wang SW, Cao YL (2005) Possible mechanisms of the protection of ginsenoside Re against MPTPinduced apoptosis in substantia nigra neurons of Parkinson’s disease mouse model. J Asian Nat Prod Res 7:215–224

    Article  CAS  PubMed  Google Scholar 

  • Xu CL, Qu R, Zhang J, Li LF, Ma SP (2013) Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats. Fitoterapia 90:112–118

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK (2013) Mucuna pruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem Int 62:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Rad Res 39:1119–1125

    Article  CAS  Google Scholar 

  • Zecca L, Wilms H, Geick S, Claasen JH, Brandenburg LO, Holzknecht C, Panizza ML, Zucca FA, Deuschl G, Sievers J, Lucius R (2008) Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol 116:47–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Ma Z, Wang J, Xie A, Xie J (2011a) Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacol 61:329–335

    Article  CAS  Google Scholar 

  • Zhang ZJ, Cheang LC, Wang MW, Lee SM (2011b) Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med 27:195–203

    PubMed  Google Scholar 

  • Zhang ZJ, Cheang LC, Wang MW, Li GH, Chu IK, Lin ZX, Lee SM (2011c) Ethanolic extract of fructus Alpinia oxyphylla protects against 6- hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cellular and Molecular Neurobiol 32:27–40

    Article  Google Scholar 

  • Zhang ZG, Wu L, Wang JL, Yang JD, Zhang J, Li LH (2012) Astragaloside IV prevents MPP(+)-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 364:209–216

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sun HM, He X, Wang YY, Gao YS, Wu HX, Xu H, Gong XG, Guo ZY (2013) Da-Bu-Yin-Wan and Qian-Zheng-San, two traditional Chinese herbal formulas, up-regulate the expression of mitochondrial subunit NADH dehydrogenase 1 synergistically in the micemodel of Parkinson’s disease. J Ethnopharmacol 146:363–371

    Article  PubMed  Google Scholar 

  • Zhao G, Li S, Qin GW, Fei J, Guo LH (2007) Inhibitive effects of Fructus Psoraleae extract on dopamine transporter and noradrenaline transporter. J Ethnopharmacol 112:498–506

    Article  PubMed  Google Scholar 

  • Zhao G, Jiang ZH, Zheng XW, Zang SY, Guo LH (2008) Dopamine transporter inhibitory and antiparkinsonian effect of common flowering quince extract. Pharmacol Biochem Behav 90:363–371

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Zheng XW, Qin GW, Gai Y, Jiang ZH, Guo LH (2009) In vitro dopaminergic neuroprotective and in vivo antiParkinsonian-like effects of Delta 3,2-hydroxybakuchiol isolated from Psoralea corylifolia (L.). Cell Mol Life Sci 66:1617–1629

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Parveen Garg, the chairman, ISF College of Pharmacy, Moga (Punjab), for his praiseworthy inspiration and support for this study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

R. D. and O. B.: conceptualizing and editing; M. G. and V. D.: medical writing, execution of whole manuscript, wrote the manuscript. All authors approved the manuscript and all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Rahul Deshmukh.

Ethics declarations

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Conflict of interests

The authors no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Bedi, O., Gupta, M. et al. A review: traditional herbs and remedies impacting pathogenesis of Parkinson’s disease. Naunyn-Schmiedeberg's Arch Pharmacol 395, 495–513 (2022). https://doi.org/10.1007/s00210-022-02223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02223-5

Keywords

Navigation