Skip to main content

Advertisement

Log in

Evaluation of the protective effect of edaravone on doxorubicin nephrotoxicity by [99mTc]DMSA renal scintigraphy and biochemical methods

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

To evaluate the nephroprotective effect of edaravone on doxorubicin-induced nephrotoxicity. In this experimental study, twenty-eight Wistar male rats were used. The rats were separated into 4 groups (n = 7); group І (control), rats were treated with saline (4 ml/kg) and group ІІ (doxorubicin), nephrotoxicity was induced by three doses of 18 mg/kg/i.p. doxorubicin, at a 24-h interval on the 12th, 13th, and 14th days. Group ІІІ (edaravone), rats were treated with edaravone (30 mg/kg/for 14 days), and group ІV (edaravone + doxorubicin), rats were treated with edaravone (30 mg/kg/for 14 days) and doxorubicin were injected (18 mg/kg/for 3 days; at a 24-h interval on the 12th, 13th, and 14th days). On the 15th day of the experiment, technetium-99m-labeled dimercaptosuccinic acid ([99mTc]DMSA) uptake was obtained in both kidneys and biochemical parameters from serum and kidney tissue were measured. Doxorubicin led to nephrotoxicity through elevation of serum blood urea nitrogen (BUN), creatinine and tumor necrosis factor-α (TNF-α), nitric oxide (NO), and interleukin-6 (IL-6) in kidney tissue and decreased [99mTc]DMSA uptake level in the kidney when compared with control group (p < 0.01). Pretreatment edaravone significantly decreased BUN and creatinine, also kidney tissue TNF-α, IL-6, NO, and increased [99mTc]DMSA uptake level compared with the doxorubicin. Edaravone has a significant nephroprotective effect through the attenuation of oxidative stress and inflammatory markers during doxorubicin-induced nephrotoxicity in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali ZK, Baker DE (2017) Formulary drug review: edaravone. Hosp Pharm 52:732–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo M, Welch WJ (2006) Oxidative stress and nitric oxide in kidney function. Curr Opin Nephrol Hypertens 15(1):72–77

    CAS  PubMed  Google Scholar 

  • Aygun H, Gul SS (2019a) Protective effect of melatonin and agomelatine on adriamycin induced nephrotoxicity in rat model: a renal scintigraphy and biochemical study. Bratisl Lek Listy 120(2):113–118

    CAS  PubMed  Google Scholar 

  • Aygun H, Gul S (2019b) Protective effect of edaravone on adriamycin-induced cardiotoxicity in rats. Cumhuriyet Med J 41(1):10–18. https://doi.org/10.7197/223.vi.531824

    Article  CAS  Google Scholar 

  • Badary OA, Abdel-Naim AB, Abdel-Wahab MH, Hamada FMA (2000) The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology 143:219–226

    CAS  PubMed  Google Scholar 

  • Bailly C (2019). Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int Immunopharmacol. 77:105967. https://doi.org/10.1016/j.intimp.2019.105967

  • Baroni EA, Costa RS, Volpini R, Coimbra TM (1999) Sodium bicarbonate treatment reduces renal injury, renal production of transforming growth factor-b, and urinary transforming growth factor-b excretion in rats with doxorubicin-induced nephropathy. Am J Kidney Dis 34(2):328–337

    CAS  PubMed  Google Scholar 

  • Basol N, Aygun H, Gul SS (2019) Beneficial effects of edaravone in experimental model of amitriptyline-induced cardiotoxicity in rats. Naunyn Schmiedeberg's Arch Pharmacol 392(11):1447–1453

    CAS  Google Scholar 

  • Baud L, Ardaillou R (1995) Tumor necrosis factor in renal injury. Miner Electrolyte Metab 21:336–341

    CAS  PubMed  Google Scholar 

  • Cabuk M, Gurel A, Sen F, Demircan N (2008) Renoprotective effect of erdosteine in rats against gentamicin nephrotoxicity: a comparison of 99mTc-DMSA uptake with biochemical studies. Mol Cell Biochem 308(1–2):35–42

    CAS  PubMed  Google Scholar 

  • Dash RP, Babu RJ, Srinivas NR (2018) Two decades-long journey from riluzole to edaravone: revisiting the clinical pharmacokinetics of the only two amyotrophic lateral sclerosis therapeutics. Clin Pharmacokinet 57:1385–1398

    CAS  PubMed  Google Scholar 

  • Dijkstra G, Moshage H, Jansen PL (2002) Blockade of NF-kappaB activation and donation of nitric oxide: new treatment options in inflammatory bowel disease. Scandinavian J Gastroenterol Supp 37(236):37–41

    CAS  Google Scholar 

  • Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E (2004) Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int 65:1714–1723

    CAS  PubMed  Google Scholar 

  • Edelstein CL (2008) Biomarkers of acute kidney injury. Adv Chronic Kidney Dis 15(3):222–234

    PubMed  PubMed Central  Google Scholar 

  • Fujiwara N, Som AT, Pham LT et al (2016) A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model. Neurosci Lett 633:7–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gül SS, Aygün H (2019) Cardioprotective effect of vitamin D and melatonin on doxorubicin-induced cardiotoxicity in rat model: an electrocardiographic, scintigraphic and biochemical study. Eur Respir J 5(4):649–657

    Google Scholar 

  • Hishida A (2007) Clinical analysis of 207 patients who developed renal disorders during or after treatment with edaravone reported during post-marketing surveillance. Clin Exp Nephrol 11(4):292–296

    CAS  PubMed  Google Scholar 

  • Hosseinimehr SJ, Asadian R, Naghshvar F et al (2015) Protective effects of thymol against nephrotoxicity induced by cisplatin with using 99mTc-DMSA in mice. Ren Fail 37(2):280–284

    CAS  PubMed  Google Scholar 

  • Jo CH, Kim S, Park JS, Kim GH (2018) Anti-inflammatory action of sitagliptin and linagliptin in doxorubicin nephropathy. Kidney Blood Press Res 43(3):987–999

    CAS  PubMed  Google Scholar 

  • Kang J, Lee Y, No K, Jung E, Sung J, Kim Y, Nam S (2002) Ginseng intestinal metabolite-I (GIM-I) reduces doxorubicin toxicity in the mouse testis. Reprod Toxicol 16:291–298

    CAS  PubMed  Google Scholar 

  • Khaloozadeh H, Yazdanbakhsh P, Homaei-shandiz F (2008) The optimal dose of CAF regimen in adjuvant chemotherapy for breast cancer patients at stage IIB. Math Biosci 213:151e158

  • Kikuchi K, Takeshige N, Miura N et al (2012) Beyond free radical scavenging: beneficial effects of edaravone (Radicut) in various diseases (review). Exp Ther Med 3(1):3–8

    CAS  PubMed  Google Scholar 

  • Korga A, Dudka J, Burdan F, Sliwinska J, Mandziuk S, Dawidek-Pietryka K (2012). The redox imbalance and the reduction of contractile protein content in rat hearts administered with L thyroxine and Doxorubicin. Oxid Med Cell Longev 681367. https://doi.org/10.1155/2012/681367

  • Labato M, Ross L (1991) Plasma disappearance of creatinine as a renal function test in the dog. Res Vet Sci 50(3):253–258

    CAS  PubMed  Google Scholar 

  • Lee VW, Harris DC (2011) Adriamycin nephropathy: a model of focal segmental glomerulosclerosis. Nephrol 16(1):30–33

    Google Scholar 

  • Liu Z, Yang C, Meng X, Li Z, Lv C, Cao P (2018) Neuroprotection of edaravone on the hippocampus of kainate-induced epilepsy rats through Nrf2/HO-1 pathway. Neurochem Int 112:159–165

    CAS  PubMed  Google Scholar 

  • Mejia J, Miranda ACC, Durante ACR, Oliveira LR, Barboza MR, Rosell KT, Jardim DP, Campos AH, Reis MA, Catanoso MF, Galvis-Alonso OY, Cabral FR (2016) Preclinical molecular imaging: development of instrumentation for translational research with small laboratory animals. Einstein (Sao Paulo) 14(3):408–414

    Google Scholar 

  • Montilla P, Tunez I, Munoz MC, Lopez A, Soria JV (1997) Hyperlipidemic nephropathy induced by adriamycin: effect of melatonin administration. Nephron 76(3):345–350

    CAS  PubMed  Google Scholar 

  • Park J, Kanayama A, Yamamoto K, Miyamoto Y (2012) ARD1 binding to RIP1 mediates doxorubicin-induced NF-kappaB activation. Biochem Biophys Res Commun 422:291–297

    CAS  PubMed  Google Scholar 

  • Patil RR, Guhagarkar SA, Devarajan PV (2008) Engineered nanocarriers of doxorubicin: a current update. Crit Rev Ther Drug Carrier Syst 25:1–61

    CAS  PubMed  Google Scholar 

  • Poljakovic M, Nygren JM, Persson K (2003) Signalling pathways regulating inducible nitric oxide synthase expression in human kidney epithelial cells. Eur J Pharmacol 23:21–28

    Google Scholar 

  • Saad SY, Najjar TA, AL-Rirkabi AC (2001) The preventive role of deferoamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res 43:211e218

    Google Scholar 

  • Sattarinezhad E, Panjehshahin MR, Torabinezhad S et al (2017) Protective effect of edaravone against cyclosporine-induced chronic nephropathy through antioxidant and nitric oxide modulating pathways in rats. Iran J Med Sci 42(2):170–178

    PubMed  PubMed Central  Google Scholar 

  • Shafik A, Khodeir MM, Fadel MS (2011) Animal study of anthracycline-induced cardiotoxicity and nephrotoxicity and evaluation of protective agents. J Cancer Sci Ther 3:96e103

    Google Scholar 

  • Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205:1–16

    CAS  PubMed  Google Scholar 

  • Sueishi K, Mishima K, Makino K, Itoh Y, Tsuruya K, Hirakata H, Oishi R (2002) Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol 451:203–208

    CAS  PubMed  Google Scholar 

  • Takei K, Watanabe K, Yuki S, Akimoto M, Sakata T, Palumbo J (2017) Edaravone and its clinical development for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 18(sup1):5–10

    CAS  PubMed  Google Scholar 

  • Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-α-mediated central nervous system toxicity. Neurobiol Dis 23(1):127–139

    CAS  PubMed  Google Scholar 

  • Tien CC, Peng YC, Yang FL, Subeq YM, Lee RP (2016) Slow infusion rate of doxorubicin induces higher pro-inflammatory cytokine production. Regul Toxicol Pharmacol 81:69–76

    CAS  PubMed  Google Scholar 

  • Ujhazy P, Zaleskis G, Mihich E, Ehrke MJ, Berleth ES (2003) Doxorubicin induces specific immune functions and cytokine expression in peritoneal cells. Cancer Immunol Immunother 52(7):463–472

    CAS  PubMed  Google Scholar 

  • Usta Y, Ismailoglu UB, Bakkaloglu A et al (2004) Effects of pentoxifylline in adriamycin-induced renal disease in rats. Pediatr Nephrol 19(8):840–843

    PubMed  Google Scholar 

  • Varatharajan R, Jun LH, Kai TZ, Jian LW, Anburaj J, Vijayan V (2017) Morphological and morphometric study of edaravone in gentamicin-induced nephrotoxicity in Sprague Dawley rats. J Young Pharm 9(1):31–35

    CAS  Google Scholar 

  • Wei MG, He W M, Lu X, et al. (2016). JiaWeiDangGui decoction ameliorates proteinuria and kidney injury in Adriamycin-induced rat by blockade of TGF-β/Smad signaling. Evid Based Complement Alternat Med, 5031890. https://doi.org/10.1155/2016/5031890

  • Yang W, Wang J, Shi L, Yu L, Qian Y, Liu Y, Wang W, Cheng S (2012) Podocyte injury and overexpression of vascular endothelial growth factor and transforming growth factor-beta 1 in adriamycin-induced nephropathy in rats. Cytokine 59(2):370–376

    CAS  PubMed  Google Scholar 

  • Yi R, Zhizhou Y, Zhaorui S, Wei S, Xin C, Shinan N (2019) Retrospective study of clinical features and prognosis of edaravone in the treatment of paraquat poisoning. Medicine (Baltimore) 98:e15441

    CAS  Google Scholar 

  • Yurekli Y, Unak P, Yenisey C, Ertay T, Biber Muftuler FZ, Medine EI (2011) L-carnitine protection against cisplatin nephrotoxicity in rats: comparison with amifostin using quantitative renal Tc 99m DMSA uptake. Mol Imaging Radionucl Ther 20(1):1–6

    PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Shi J, Li YJ, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp 57:435–445

    CAS  Google Scholar 

  • Zhang S, Chen ZX, Jiang YY, Cai QQ, Yang ZH, Wang CR, Wu XY, Ying P, Lu ZQ (2017) Intervention of edaravone against renal injury induced by acute paraquat poisoning in rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 35(6):408–413

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HA: research concept and design. HA, FD, MD: conducting experiments, data collecting, analysis, and interpretation of data. HA: Preparation of articles and revisions. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hatice Aygun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, F., Demir, M. & Aygun, H. Evaluation of the protective effect of edaravone on doxorubicin nephrotoxicity by [99mTc]DMSA renal scintigraphy and biochemical methods. Naunyn-Schmiedeberg's Arch Pharmacol 393, 1383–1390 (2020). https://doi.org/10.1007/s00210-020-01832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-020-01832-2

Keywords

Navigation