Skip to main content
Log in

Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Manganese (Mn) is required for many essential biological processes as well as in the development and functioning of the brain. Extensive accumulation of Mn in the brain may cause central nervous system dysfunction known as manganism, a motor disorder associated with cognitive and neuropsychiatric deficits similar to parkinsonism. Vinpocetine, a synthetic derivative of the alkaloid vincamine, is used to improve the cognitive function in cerebrovascular diseases. It possesses antioxidant and antiinflammatory properties. The present work was designed to explore the potential neuroprotective mechanisms exerted by vinpocetine in the Mn-induced neurotoxicity in rats. Rats were allocated into four groups. First group was given saline. The other three groups were given MnCl2; two of them were treated with either l-dopa, the gold standard antiparkinsonian drug, or vinpocetine. Rats receiving MnCl2 exhibited lengthened catalepsy duration in the grid and bar tests, motor impairment in the open-field test and short-term memory deficit in the Y-maze test. Additionally, histological examination revealed structural alterations and degeneration in different brain regions. Besides, striatal monoamines and mitochondrial complex I contents were declined, apoptotic biomarker caspase-3 expression and acetylcholinesterase activity were elevated. Moreover, oxidative stress and inflammation were detected in the striata. l-dopa or vinpocetine exerted protective effects against MnCl2-induced neurotoxicity. It could be hypothesized that modulation of monoamines, upregulation of mitochondrial complex I, antioxidant, antiinflammatory, and antiapoptotic activities are significant mechanisms underlying the neuroprotective effect of vinpocetine in the Mn-induced neurotoxicity model in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

DA:

Dopamine

H&E:

Hematoxylin and eosin

IL-1β:

Interleukin-1 beta

MDA:

Malondialdehyde

Mn:

Manganese

NA:

Noradrenaline

PDE:

Phosphodiesterase

ROS:

Reactive oxygen species

5-HT:

Serotonin

SOD:

Superoxide dismutase

TAC:

Total antioxidant capacity

TNF-α:

Tumor necrosis factor-alpha

α-Syn:

α-synuclein

References

  • Abdel-Salam OM, Khadrawy YA, Salem NA, Sleem AA (2011) Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine. Neurochem Res 36:1062–1072

    Article  PubMed  CAS  Google Scholar 

  • Abdin AA, Hamouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 55(8):1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Alam M, Schmidt WJ (2004) L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone treated rats. Behav Brain Res 153(2):439–446

    Article  PubMed  CAS  Google Scholar 

  • Apaydin M, Erbas O, Taskiran D (2016) Protection by Edaravone, a radical scavenger, against manganese-induced neurotoxicity in rats. J Biochem Mol Toxicol 30(5):217–223

    Article  PubMed  CAS  Google Scholar 

  • Avila DS, Colle D, Gubert P, Palma AS, Puntel G, Manarin F, Noremberg S, Nascimento PC, Aschner M, Rocha JB, Soares FA (2010) A possible neuroprotective action of a vinylic telluride against Mn-induced neurotoxicity. Toxicol Sci 115(1):194–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aydin E, Hritcu L, Dogan G, Hayta S, Bagci E (2016) The effects of inhaled Pimpinella peregrina essential oil on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Mol Neurobiol 53:6557–6567

    Article  PubMed  CAS  Google Scholar 

  • Babadi VY, Sadeghi L, Shirani K, Malekirad AA, Rezaei M (2014) The toxic effect of manganese on the acetylcholinesterase activity in rat brains. J Toxicol 2014:946372

    Google Scholar 

  • Bahar E, Lee GH, Bhattarai KR, Lee HY, Choi MK, Rashid HO, Kim JY, Chae HJ, Yoon H (2017) Polyphenolic extract of Euphorbia supina attenuates manganese-induced neurotoxicity by enhancing antioxidant activity through regulation of ER stress and ER stress-mediated apoptosis. Int J Mol Sci 18(2):300. https://doi.org/10.3390/ijms18020300

  • Bakthavatsalam S, Das Sharma S, Sonawane M, Thirumalai V, Datta AA (2014) Zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity. Dis Model Mech 7(11):1239–1251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, London

    Google Scholar 

  • Beaudin SA, Strupp BJ, Lasley SM, Fornal CA, Mandal S, Smith DR (2015) Oral methylphenidate alleviates the fine motor dysfunction caused by chronic postnatal manganese exposure in adult rats. Toxicol Sci 144(2):318–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behling EB, Sendão MC, Francescato HD, Antunes LM, Costa RS, Bianchi Mde L (2006) Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep 58(4):526–532

    PubMed  CAS  Google Scholar 

  • Bhatti JZ, Hindmarch I (1987) Vinpocetine effects on cognitive impairments produced by flunitrazepam. Int Clin Psychopharmacol 2:325–331

    Article  PubMed  CAS  Google Scholar 

  • Bora S, Erdogan MA, Armagan G, Sevgili E, Dagcı T (2016) Vinpocetine and vasoactive intestinal peptide attenuate manganese-induced toxicity in NE-4C cells. Biol Trace Elem Res 174(2):410–418

    Article  PubMed  CAS  Google Scholar 

  • Bouabid S, Delaville C, de Deurwaerdère P, Lakhdar-Ghazal N, Benazzouz A (2014) Manganese-induced atypical parkinsonism is associated with altered basal ganglia activity and changes in tissue levels of monoamines in the rat. PLoS One 9(6):e98952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouabid S, Tinakoua A, Lakhdar-Ghazal N, Benazzouz A (2015) Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J Neurochem 136:677–691. https://doi.org/10.1111/jnc.13442

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brouillet EP, Shinobu L, McGarvey U, Hochberg F, Beal MF (1993) Manganese injection into the rat striatum produces excitotoxic lesions by impairing energy metabolism. Exp Neurol 120(1):89–94

    Article  PubMed  CAS  Google Scholar 

  • Capitelli C, Sereniki A, Lima MM, Reksidler AB, Tufik S, Vital MA (2008) Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol 594:101–108

    Article  PubMed  CAS  Google Scholar 

  • Carvalho MM, Campos FL, Coimbra B, Pêgo JM, Rodrigues C, Lima R, Rodrigues AJ, Sousa N, Salgado AJ (2013) Behavioral characterization of the 6-hydroxidopamine model of Parkinson’s disease and pharmacological rescuing of non-motor deficits. Mol Neurodegener 8:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chtourou Y, Fetoui H, Sefi M, Trabelsi K, Barkallah M, Boudawara T, Kallel H, Zeghal N (2010) Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. Biometals 23(6):985–996

    Article  PubMed  CAS  Google Scholar 

  • Chtourou Y, Fetoui H, Garoui el M, Boudawara T, Zeghal N (2012) Improvement of cerebellum redox states and cholinergic functions contribute to the beneficial effects of silymarin against manganese-induced neurotoxicity. Neurochem Res 37(3):469–479

    Article  PubMed  CAS  Google Scholar 

  • Chun HS, Lee H, Son JH (2001) Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neurosci Lett 316(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Ciarlone AE (1978) Further modification of a flurometric method for analyzing brain amines. Microchem J 23:9–12

    Article  CAS  Google Scholar 

  • Cunha JM, Masur J (1978) Evaluation of psychotropic drugs with a modified open field test. Pharmacology 16(5):259–267

    Article  PubMed  CAS  Google Scholar 

  • DeNoble VJ, Repetti SJ, Gelpke LW, Wood LM, Keim KL (1986) Vinpocetine: nootropic effects on scopolamine-induced and hypoxia-induced retrieval deficits of a step-through passive avoidance response in rats. Pharmacol Biochem Behav 24:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh R, Sharma PL (2013) Pharmacological inhibition of PDE1 by vinpocetine attenuates 3-nitropropionic acid-induced behavioral and biochemical abnormalities in rats. Innov Pharm Pharmacother (IPP) 1(2):145–161

    CAS  Google Scholar 

  • Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—a PDE1 inhibitor. Eur J Pharmacol 620(1–3):49–56

    Article  PubMed  CAS  Google Scholar 

  • Desole MS, Miele M, Esposito G, Migheli R, Fresu L, De Natale G, Miele E (1994) Dopaminergic system activity and cellular defense mechanisms in the striatum and striatal synaptosomes of the rat subchronically exposed to manganese. Arch Toxicol 68(9):566–570

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Erdö SL, Cai NS, Wolff JR, Kiss B (1990) Vinpocetin protects against excitotoxic cell death in primary cultures of rat cerebral cortex. Eur J Pharmacol 187(3):551–553

    Article  PubMed  Google Scholar 

  • Finkelstein Y, Milatovic D, Aschner M (2007) Modulation of cholinergic systems by manganese. Neurotoxicology 28(5):1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Gabryel B, Adamek M, Pudełko A, Małecki A, Trzeciak HI (2002) Piracetam and vinpocetine exert cytoprotective activity and prevent apoptosis of astrocytes in vitro in hypoxia and reoxygenation. Neurotoxicology 23(1):19–31

    Article  PubMed  CAS  Google Scholar 

  • Galvani P, Fumagalli P, Santagostino A (1995) Vulnerability of mitochondrial complex I in PC12 cells exposed to manganese. Eur J Pharmacol 293(4):377–383

    Article  PubMed  CAS  Google Scholar 

  • Gavin CE, Gunter KK, Gunter TE (1992) Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol Appl Pharmacol 115(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Gawlik M, Gawlik MB, Smaga I, Filip M (2017) Manganese neurotoxicity and protective effects of resveratrol and quercetin in preclinical research. Pharmacol Rep 69(2):322–330

    Article  PubMed  CAS  Google Scholar 

  • Genaro G, Schmidek WR (2000) Exploratory activity of rats in three different environments. Ethology 106:849–859

    Article  Google Scholar 

  • Gunter TE, Gavin CE, Aschner M, Gunter KK (2006) Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology 27(5):765–776

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Sharma B (2014) Protective effects of phosphodiesterase-1 (PDE1) and ATP sensitive potassium (KATP) channel modulators against 3-nitropropionic acid induced behavioral and biochemical toxicities in experimental Huntington′s disease. Eur J Pharmacol 732:111–122

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Mundo N, Sitges M (2013) Vinpocetine and α-tocopherol prevent the increase in DA and oxidative stress induced by 3-NPA in striatum isolated nerve endings. J Neurochem 124(2):233–240

    Article  PubMed  CAS  Google Scholar 

  • Hirata (2002) Manganese-induced apoptosis in PC12 cells. Neurotoxicol Teratol 24(5):639–653

    Article  PubMed  CAS  Google Scholar 

  • Hogas M, Ciobica A, Hogas S, Bild V, Hritcu L (2011) The effects of the administration of two different doses of manganese on short-term spatial memory and anxiety-like behavior in rats. Arch Biol Sci, Belgrade 63(4):1031–1036

    Article  Google Scholar 

  • Jeon KI, XiangbinXu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Jian-Dong Li JD, Chen Yan C (2010) Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A 107(21):9795–9800

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Shi S, Zhou Q, Ma X, Nie X, Yang L, Han J, Xu G, Wan C (2014) Downregulation of the Wnt/β-catenin signaling pathway is involved in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Neurosci Res 92(6):783–794

    Article  PubMed  CAS  Google Scholar 

  • Kiss B, Szporny L (1988) On the possible role of central monoaminergic systems in the central nervous system actions of vinpocetine. Drug Dev Res 14:263–279

    Article  Google Scholar 

  • Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M (2015) Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 12(7):7519–7540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai JC, Chan AW, Leung TK, Minski MJ, Lim L (1992) Neurochemical changes in rats chronically treated with a high concentration of manganese chloride. Neurochem Res 17(9):841–847

    Article  PubMed  CAS  Google Scholar 

  • Liapi C, Zarros A, Galanopoulou P, Theocharis S, Skandali N, Al-Humadi H, Anifantaki F, Gkrouzman E, Mellios Z, Tsakiris S (2008) Effects of short-term exposure to manganese on the adult rat brain antioxidant status and the activities of acetylcholinesterase, (Na,K)-ATPase and Mg-ATPase: modulation by L-cysteine. Basic Clin Pharmacol Toxicol 103(2):171–175

    Article  PubMed  CAS  Google Scholar 

  • Liccione JJ, Maines MD (1988) Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J Pharmacol Exp Ther 247(1):156–161

    PubMed  CAS  Google Scholar 

  • Liu M, Cai T, Zhao F, Zheng G, Wang Q, Chen Y, Huang C, Luo W, Chen J (2009) Effect of microglia activation on dopaminergic neuronal injury induced by manganese, and its possible mechanism. Neurotox Res 16(1):42–49

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Barber DS, Zhang P, Liu B (2013) Complex II of the mitochondrial respiratory chain is the key mediator of divalent manganese-induced hydrogen peroxide production in microglia. Toxicol Sci 132(2):298–306

    Article  PubMed  CAS  Google Scholar 

  • Malecki EA (2001) Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Res Bull 55(2):225–228

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Clark RE (2007) The rodent hippocampus and spatial memory: from synapses to systems. Cell Mol Life Sci 64(4):401–431

    Article  PubMed  CAS  Google Scholar 

  • Milatovic D, Yin Z, Gupta RC, Sidoryk M, Albrecht J, Aschner JL, Aschner M (2007) Manganese induces oxidative impairment in cultured rat astrocytes. Toxicol Sci 98(1):198–205

    Article  PubMed  CAS  Google Scholar 

  • Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240(2):219–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Milatovic D, Gupta RC, Yu Y, Zaja-Milatovic S, Aschner M (2011) Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. Toxicol Appl Pharmacol 256(3):219–226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem Biophys Res Commun 46:849–864

    Article  PubMed  CAS  Google Scholar 

  • Ogunrin A (2014) Effect of vinpocetine (cognitol™) on cognitive performances of a nigerian population. Ann Med Health Sci Res 4(4):654–661

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  • Patyar S, Prakash A, Modi M, Medhi B (2011) Role of vinpocetine in cerebrovascular diseases. Pharmacol Rep 63:618–628

    Article  PubMed  CAS  Google Scholar 

  • Pereira C, Agostinho P, Oliveira CR (2000) Vinpocetine attenuates the metabolic dysfunction induced by amyloid beta-peptides in PC12 cells. Free Radic Res 33(5):497–506

    Article  PubMed  CAS  Google Scholar 

  • Peres TV, Parmalee NL, Martinez-Finley EJ, Aschner M (2016a) Untangling the manganese-α-Synuclein web. Front Neurosci 10:364

    Article  PubMed  PubMed Central  Google Scholar 

  • Peres TV, Schettinger MR, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016b) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol 66:675–682

    Article  PubMed  CAS  Google Scholar 

  • Ryan L, Lin CY, Ketcham K, Nadel L (2010) The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus 20(1):11–18

    PubMed  Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102(5):748–759

    Article  PubMed  CAS  Google Scholar 

  • Santos MS, Duarte AI, Moreira PI, Oliveira CR (2000) Synaptosomal response to oxidative stress: effect of vinpocetine. Free Radic Res 32(1):57–66

    Article  PubMed  CAS  Google Scholar 

  • Santos AP, Lucas RL, Andrade V, Mateus ML, Milatovic D, Aschner M, Batoreu MC (2012a) Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicol Appl Pharmacol 258(3):394–402

    Article  PubMed  CAS  Google Scholar 

  • Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP (2012b) The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 292(2–3):90–98

    Article  PubMed  CAS  Google Scholar 

  • Santos D, Batoréu MC, Tavares de Almeida I, Davis Randall L, Mateus ML, Andrade V, Ramos R, Torres E, Aschner M, Marreilha dos Santos AP (2013) Evaluation of neurobehavioral and neuroinflammatory end-points in the post-exposure period in rats sub-acutely exposed to manganese. Toxicology 314(1):95–99

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Bodewitz G, Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology 94(4):491–495

    Article  PubMed  CAS  Google Scholar 

  • Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125

    Article  PubMed  CAS  Google Scholar 

  • Seo YA, Li Y, Wessling-Resnick M (2013) Iron depletion increases manganese uptake and potentiates apoptosis through ER stress. Neurotoxicology 38:67–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shang Y, Wang L, Li Y, Gu PF (2016) Vinpocetine improves scopolamine induced learning and memory dysfunction in C57 BL/6J mice. Biol Pharm Bull 39(9):1412–1418

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Deshmukh R (2015) Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience 286:393–403

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Zhao J, Yang L, Nie X, Han J, Ma X, Wan C, Jiang J (2015) KHSRP participates in manganese-induced neurotoxicity in rat striatum and PC12 cells. J Mol Neurosci 55(2):454–465

    Article  PubMed  CAS  Google Scholar 

  • Sitges M, Galvan E, Nekrassov V (2005) Vinpocetine blockade of sodium channels inhibits the rise in sodium and calcium induced by 4 aminopyridine in synaptosomes. Neurochem Int 46:533–540

    Article  PubMed  CAS  Google Scholar 

  • Solanki P, Prasad D, Muthuraju S, Sharma AK, Singh SB, Ilavzhagan G (2011) Preventive effect of piracetam and vinpocetine on hypoxia-reoxygenation induced injury in primary hippocampal culture. Food Chem Toxicol 49(4):917–922

    Article  PubMed  CAS  Google Scholar 

  • Subhan Z, Hindmarch I (1985) Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol 28(5):567–571

    Article  PubMed  CAS  Google Scholar 

  • Szpetnar M, Luchowska-Kocot D, Boguszewska-Czubara A, Kurzepa J (2016) The influence of manganese and glutamine intake on antioxidants and neurotransmitter amino acids levels in rats’ brain. Neurochem Res 41(8):2129–2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208(1):1–25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teixeira MD, Souza CM, Menezes AP, Carmo MR, Fonteles AA, Gurgel JP, Lima FA, Viana GS, Andrade GM (2013) Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats. Pharmacol Biochem Behav 110:1–7

    Article  PubMed  CAS  Google Scholar 

  • Valikovics A (2007) Investigation of the effect of vinpocetine on cerebral blood flow and cognitive functions. Ideggyogy Sz 60:301–310

    PubMed  Google Scholar 

  • Van Staveren WCG, Markerink-van Ittersum M, Steinbusch HW, de Vente J (2001) The effects of phosphodiesterase inhibition on cyclic GMP and cyclic AMP accumulation in the hippocampus of the rat. Brain Res 888:275–286

    Article  PubMed  Google Scholar 

  • Van Wimersma Greidanus TB, Maigret C, Torn M, Ronner E, Van der Kracht S, Van der Wee NJ, Versteeg DH (1989) Dopamine D-1 and D-2 receptor agonists and antagonists and neuropeptide-induced excessive grooming. Eur J Pharmacol 173:227–231

    Article  PubMed  Google Scholar 

  • Vas A, Gulyas B, Szabo Z, Bonoczk P, Csiba L, Kiss B et al (2002) Clinical and non-clinical investigations using positron emission tomography, near infrared spectroscopy and transcranial Doppler methods on the neuroprotective drug vinpocetine: a summary of evidences. J Neurol Sci 203-204:259–262

    Article  PubMed  Google Scholar 

  • Vezér T, Kurunczi A, Náray M, Papp A, Nagymajtényi L (2007) Behavioral effects of subchronic inorganic manganese exposure in rats. Am J Ind Med 50(11):841–852

    Article  PubMed  CAS  Google Scholar 

  • Vidal L, Alfonso M, Campos F, Faro LR, Cervantes RC, Durán R (2005) Effects of manganese on extracellular levels of dopamine in rat striatum: an analysis in vivo by brain microdialysis. Neurochem Res 30(9):1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Volosin M, Cancela L, Molina V (1988) Influence of adrenocorticotrophic hormone on the behaviour in the swim test of rats treated chronically with desipramine. J Pharm Pharmacol 40(1):74–76

    Article  PubMed  CAS  Google Scholar 

  • Vorhees CV (1974) Some behavioral effects of maternal hypervitaminosis A in rats. Teratology 10(3):269–273

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang C, Jiang Y, Deng X, Lu J, Ou S (2014) Protective role of sodium para-amino salicylic acid against manganese-induced hippocampal neurons damage. Environ Toxicol Pharmacol 37(3):1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Li X, Yang D, Zhang H, Zhao P, Fu J, Yao B, Zhou Z (2015) ER stress and ER stress-mediated apoptosis are involved in manganese-induced neurotoxicity in the rat striatum in vivo. Neurotoxicology 48:109–119

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Suzumura A, Tamaru T, Takayanagi T, Sawada M (1999) Effects of phosphodiesterase inhibitors on cytokine production by microglia. Mult Scler 5(2):126–133

    Article  PubMed  CAS  Google Scholar 

  • Zaitone SA, Abo-Elmatty DM, Elshazly SM (2012) Piracetam and vinpocetine ameliorate rotenone-induced parkinsonism in rats. Indian J Pharmacol 44(6):774–779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang ZM, Huang SW (2008) Intervention effect of taurine on neurotoxicity of manganese in rat’s prefrontal cortex. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 26(10):601–604

    PubMed  CAS  Google Scholar 

  • Zhang L, Yang L (2014) Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: a review of the literature. Molecules 20(1):335–347

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Fu J, Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol in Vitro 18(1):71–77

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Xu Z, Gao J, Xu B, Deng Y (2008) In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol 26(2):232–236

    Article  PubMed  CAS  Google Scholar 

  • Zhao F, Cai T, Liu M, Zheng G, Luo W, Chen J (2009) Manganese induces dopaminergic neurodegeneration via microglial activation in a rat model of manganism. Toxicol Sci 107(1):156–164

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebatalla I. Ahmed.

Ethics declarations

The study complies with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publications No. 8023, revised 1978) and is approved by the Ethics Committee of Faculty of Pharmacy, Cairo University.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, R.I., Ahmed, H.I. & El-Sayeh, B.M. Protective effect of vinpocetine against neurotoxicity of manganese in adult male rats. Naunyn-Schmiedeberg's Arch Pharmacol 391, 729–742 (2018). https://doi.org/10.1007/s00210-018-1498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1498-0

Keywords

Navigation