Skip to main content

Advertisement

Log in

Carboxyl terminus-truncated α1D-adrenoceptors inhibit the ERK pathway

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Human α1D-adrenoceptors are G protein-coupled receptors that mediate adrenaline/noradrenaline actions. There is a growing interest in identifying regulatory domains in these receptors and determining how they function. In this work, we show that the absence of the human α1D-adrenoceptor carboxyl tail results in altered ERK (extracellular signal-regulated kinase) and p38 phosphorylation states. Amino terminus-truncated and both amino and carboxyl termini-truncated α1D-adrenoceptors were transfected into Rat-1, HEK293, and B103 cells, and changes in the phosphorylation state of extracellular signal-regulated kinase was assessed using biochemical and biophysical approaches. The phosphorylation state of other protein kinases (p38, MEK1, and Raf-1) was also studied. Noradrenaline-induced ERK phosphorylation in Rat-1 fibroblasts expressing amino termini-truncated α1D-adrenoceptors. However, in cells expressing receptors with both amino and carboxyl termini truncations, noradrenaline-induced activation was abrogated. Interestingly, ERK phosphorylation that normally occurs through activation of endogenous G protein-coupled receptors, EGF receptors, and protein kinase C, was also decreased, suggesting that downstream steps in the mitogen-activated protein kinase pathway were affected. A similar effect was observed in B103 cells but not in HEK 293 cells. Phosphorylation of Raf-1 and MEK1 was also diminished in Rat-1 fibroblasts expressing amino- and carboxyl-truncated α1D-adrenoceptors. Our data indicate that expression of carboxyl terminus-truncated α1D-adrenoceptors alters ERK and p38 phosphorylation state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Hague C, Hall RA, Minneman KP (2006) Syntrophins regulate alpha1D-adrenergic receptors through a PDZ domain-mediated interaction. J Biol Chem 281:12414–12420

    Article  CAS  PubMed  Google Scholar 

  • Diviani D, Lattion AL, Cotecchia S (1997) Characterization of the phosphorylation sites involved in G protein-coupled receptor kinase- and protein kinase C-mediated desensitization of the alpha1B-adrenergic receptor. J Biol Chem 272:28712–28719

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson R, Schioth HB (2005) The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67:1414–1425

    Article  CAS  PubMed  Google Scholar 

  • García-Sáinz JA, Rodríguez-Pérez CE, Romero-Ávila MT (2004) Human alpha-1D adrenoceptor phosphorylation and desensitization. Biochem Pharmacol 67:1853–1858

    Article  PubMed  Google Scholar 

  • García-Sáinz JA, Romero-Ávila MT, Medina LC (2010) Alpha(1D)-adrenergic receptors constitutive activity and reduced expression at the plasma membrane. Methods Enzymol 484:109–125

    Article  PubMed  Google Scholar 

  • García-Sáinz JA, Vázquez-Cuevas FG, Romero-Ávila MT (2001) Phosphorylation and desensitization of alpha1d-adrenergic receptors. Biochem J 353:603–610

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Sáinz JA, Vázquez-Prado J, Villalobos-Molina R (1999) Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease. Arch Med Res 30:449–458

    Article  PubMed  Google Scholar 

  • García-Sáinz JA, Villalobos-Molina R (2004) The elusive alpha(1D)-adrenoceptor: molecular and cellular characteristics and integrative roles. Eur J Pharmacol 500:113–120

    Article  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hague C, Chen Z, Pupo AS, Schulte NA, Toews ML, Minneman KP (2004) The N terminus of the human {alpha}1D-adrenergic receptor prevents cell surface expression. J Pharmacol Exp Ther 309:388–397

    Article  CAS  PubMed  Google Scholar 

  • Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, Svoboda K (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci U S A 105:19264–19269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR Jr (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol Rev 47:267–270

  • Keffel S, Alexandrov A, Goepel M, Michel MC (2000) Alpha(1)-adrenoceptor subtypes differentially couple to growth promotion and inhibition in Chinese hamster ovary cells. Biochem Biophys Res Commun 272:906–911

    Article  CAS  PubMed  Google Scholar 

  • Knight T, Irving JA (2014) Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol 4:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351(Pt 2):289–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364:249–252

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  Google Scholar 

  • Lattion AL, Diviani D, Cotecchia S (1994) Truncation of the receptor carboxyl terminus impairs agonist-dependent phosphorylation and desensitization of the alpha 1B-adrenergic receptor. J Biol Chem 269:22887–22893

    CAS  PubMed  Google Scholar 

  • Lefkowitz RJ (2013) A brief history of G-protein coupled receptors (Nobel lecture). Angew Chem Int Ed Engl 52:6366–6378

    Article  CAS  PubMed  Google Scholar 

  • Lyssand JS, Defino MC, Tang XB, Hertz AL, Feller DB, Wacker JL, Adams ME, Hague C (2008) Blood pressure is regulated by an {alpha}1D-adrenergic receptor/Dystrophin Signalosome. J Biol Chem 283:18792–18800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCune DF, Edelmann SE, Olges JR, Post GR, Waldrop BA, Waugh DJ, Perez DM, Piascik MT (2000) Regulation of the cellular localization and signaling properties of the alpha(1B)- and alpha(1D)-adrenoceptors by agonists and inverse agonists. Mol Pharmacol 57:659–666

    CAS  PubMed  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2006) Modulation of the Akt/Ras/Raf/MEK/ERK pathway by a(3) adenosine receptor. Purinergic Signal 2:627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamura T, Antoun G, Keir ST, Friedman H, Bigner DD, Ali-Osman F (2015) Phosphorylation of glutathione S-transferase P1 (GSTP1) by epidermal growth factor receptor (EGFR) promotes formation of the GSTP1-c-Jun N-terminal kinase (JNK) complex and suppresses JNK downstream signaling and apoptosis in brain tumor cells. J Biol Chem 290:30866–30878

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Aso M, Segura V, Monto F, Barettino D, Noguera MA, Milligan G, D’Ocon P (2013) The three alpha1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Biochim Biophys Acta 1833:2322–2333

    Article  PubMed  Google Scholar 

  • Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  • Pupo AS, Uberti MA, Minneman KP (2003) N-terminal truncation of human alpha1D-adrenoceptors increases expression of binding sites but not protein. Eur J Pharmacol 462:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Pérez CE, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA (2009) Signaling properties of human alpha(1D)-adrenoceptors lacking the carboxyl terminus: intrinsic activity, agonist-mediated activation, and desensitization. Naunyn Schmiedeberg's Arch Pharmacol 380:99–107

    Article  Google Scholar 

  • Slupsky JR, Quitterer U, Weber CK, Gierschik P, Lohse MJ, Rapp UR (1999) Binding of Gbetagamma subunits to cRaf1 downregulates G-protein-coupled receptor signalling. Curr Biol 9:971–974

    Article  CAS  PubMed  Google Scholar 

  • Vázquez-Prado J, Casas-González P, García-Sáinz JA (2003) G protein-coupled receptor cross-talk: pivotal roles of protein phosphorylation and protein-protein interactions. Cell Signal 15:549–557

    Article  PubMed  Google Scholar 

  • Villalobos-Molina R, Ibarra M (1996) Alpha 1-adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the alpha 1D or alpha 1A subtypes. Eur J Pharmacol 298:257–263

    Article  CAS  PubMed  Google Scholar 

  • Villalobos-Molina R, López-Guerrero JJ, Ibarra M (1999) Functional evidence of alpha1D-adrenoceptors in the vasculature of young and adult spontaneously hypertensive rats. Br J Pharmacol 126:1534–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldrop BA, Mastalerz D, Piascik MT, Post GR (2002) Alpha(1B)- and alpha(1D)-adrenergic receptors exhibit different requirements for agonist and mitogen-activated protein kinase activation to regulate growth responses in rat 1 fibroblasts. J Pharmacol Exp Ther 300:83–90

    Article  CAS  PubMed  Google Scholar 

  • Whitworth JA (2003) 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 21:1983–1992

    Article  PubMed  Google Scholar 

  • Yang X, Zheng J, Xiong Y, Shen H, Sun L, Huang Y, Sun C, Li Y, He J (2010) Beta-2 adrenergic receptor mediated ERK activation is regulated by interaction with MAGI-3. FEBS Lett 584:2207–2212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants from CONACyT [177556-253156] and DGAPA-UNAM [200812-200915]. JC was supported by the NIH (NS084398). Marco Antonio Alfonzo is a student of the Programa de Maestría y Doctorado en Ciencias Bioquímicas-UNAM and the recipient of a fellowship from CONACyT; the present work constitutes a major part of his thesis. We express our gratitude to Dr. Rocío Alcántara-Hernández, Dr. Claudia Rivera, Dr. Héctor Malagón, Juan Barbosa, Aurey Galván, and Manuel Ortínez for technical help and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Adolfo García-Sáinz.

Additional information

Jean A. Castillo-Badillo is currently affiliated at Research Support Network, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Universidad Nacional Autónoma deMéxico (CIC-UNAM),Vasco de Quiroga 15, 14000 México, D.F, Mexico

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfonzo-Méndez, M.A., Castillo-Badillo, J.A., Romero-Ávila, M.T. et al. Carboxyl terminus-truncated α1D-adrenoceptors inhibit the ERK pathway. Naunyn-Schmiedeberg's Arch Pharmacol 389, 911–920 (2016). https://doi.org/10.1007/s00210-016-1254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1254-2

Keywords

Navigation