Skip to main content

GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha2B-Adrenoceptor Variants

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2547))

Abstract

α2-Adrenergic receptors (ARs) mediate many cellular actions of epinephrine and norepinephrine, including inhibition of their secretion (sympathetic inhibition) from adrenal chromaffin cells. Like many other G protein-coupled receptors (GPCRs), they undergo agonist-dependent phosphorylation and desensitization by GPCR kinases (GRKs), a phenomenon recently shown to play a major role in the sympathetic overdrive that accompanies and aggravates chronic heart failure. A three-glutamic acid deletion polymorphism in the human α2B-AR subtype gene (Glu301–303) causes impaired agonist-promoted receptor phosphorylation and desensitization, resulting in enhanced signaling to inhibition of cholinergic-induced catecholamine secretion in adrenal chromaffin cells. One of the various pharmacological assays that can be used to quantify and quantitatively compare the degrees of agonist-dependent desensitization, i.e., G protein decoupling, of these two polymorphic α2B-AR variants (or of any two GPCRs for that matter) is the guanosine-5′-O-3-thiotriphosphate (GTPγS) assay that can directly quantify heterotrimeric G protein activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bylund DB, Eikenberg DC, Hieble JP et al (1994) IV International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  2. Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101:65–74

    Article  CAS  PubMed  Google Scholar 

  3. Eason MG, Liggett SB (1992) Subtype-selective desensitization of alpha 2-adrenergic receptors. Different mechanisms control short and long term agonist-promoted desensitization of alpha 2C10, alpha 2C4, and alpha 2C2. J Biol Chem 267:25473–25479

    Article  CAS  PubMed  Google Scholar 

  4. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  5. Lymperopoulos A, Rengo G, Koch WJ (2007) Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Tr Mol Med 13:503–511

    Article  CAS  Google Scholar 

  6. Brede M, Nagy G, Philipp M et al (2003) Differential control of adrenal and sympathetic catecholamine release by 2-adrenoceptor subtypes. Mol Endocrinol 17:1640–1646

    Article  CAS  PubMed  Google Scholar 

  7. Lymperopoulos A, Rengo G, Funakoshi H et al (2007) Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13:315–323

    Article  CAS  PubMed  Google Scholar 

  8. Lymperopoulos A, Rengo G, Gao E et al (2010) Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285:16378–16386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lymperopoulos A, Rengo G, Zincarelli C et al (2008) Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 16:302–307

    Article  CAS  PubMed  Google Scholar 

  10. Small KM, Brown KM, Forbes SL et al (2001) Polymorphic deletion of three intracellular acidic residues of the alpha 2B-adrenergic receptor decreases G protein-coupled receptor kinase-mediated phosphorylation and desensitization. J Biol Chem 276:4917–4922

    Article  CAS  PubMed  Google Scholar 

  11. Salim S, Desai AN, Taneja M et al (2009) Chronic adrenaline treatment fails to down-regulate the Del301-303-alpha2B-adrenoceptor in neuronal cell. Br J Pharmacol 158:314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muszkat M, Kurnik D, Sofowora GG et al (2010) Desensitization of vascular response in vivo: contribution of genetic variation in the [alpha]2B-adrenergic receptor subtype. J Hypertension 28:278–284

    Article  CAS  Google Scholar 

  13. Lymperopoulos A (2011) GRK2 and β-arrestins in cardiovascular disease: something old, something new. Am J Cardiovasc Dis 1:126–137

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen K, Kassimatis T, Lymperopoulos A (2011) Impaired desensitization of a human polymorphic α2B-adrenergic receptor variant enhances its sympatho-inhibitory activity in chromaffin cells. Cell Commun Signal 9:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lymperopoulos A, Karkoulias G, Koch WJ et al (2006) Alpha(2)-adrenergic receptor subtype-specific activation of NF-kappaB in PC12 cells. Neurosci Lett 402:210–215

    Article  CAS  PubMed  Google Scholar 

  16. Taraviras S, Olli-Lahdesmaki T, Lymperopoulos A et al (2002) Subtype-specific neuronal differentiation of PC12 cells transfected with α2-adrenergic receptors. Eur J Cell Biol 81:363–374

    Article  CAS  PubMed  Google Scholar 

  17. McCrink KA, Brill A, Lymperopoulos A (2015) Adrenal G protein-coupled receptor kinase-2 in regulation of sympathetic nervous system activity in heart failure. World J Cardiol 7:539–543

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lymperopoulos A, Aukszi B (2017) Angiotensin receptor blocker drugs and inhibition of adrenal beta-arrestin-1-dependent aldosterone production: implications for heart failure therapy. World J Cardiol 9:200–206

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753

    Article  CAS  PubMed  Google Scholar 

  20. Capote LA, Mendez Perez R, Lymperopoulos A (2015) GPCR signaling and cardiac function. Eur J Pharmacol 763:143–148

    Article  CAS  PubMed  Google Scholar 

  21. Cora N, Ghandour J, Pollard CM et al (2020) Nicotine-induced adrenal beta-arrestin1 upregulation mediates tobacco-related hyperaldosteronism leading to cardiac dysfunction. World J Cardiol 12:192–202

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lymperopoulos A (2012) Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors. Curr Pharm Des 18:192–198

    Article  CAS  PubMed  Google Scholar 

  23. Lymperopoulos A, Bathgate A (2013) Arrestins in the cardiovascular system. Prog Mol Biol Transl Sci 118:297–334

    Article  CAS  PubMed  Google Scholar 

  24. Lymperopoulos A, Bathgate A (2012) Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics 13:323–341

    Article  CAS  PubMed  Google Scholar 

  25. Lymperopoulos A, French F (2014) Pharmacogenomics of heart failure. Methods Mol Biol 1175:245–257

    Article  PubMed  Google Scholar 

  26. Desimine VL, McCrink KA, Parker BM et al (2018) Biased agonism/antagonism of cardiovascular GPCRs for heart failure therapy. Int Rev Cell Mol Biol 339:41–61

    Article  CAS  PubMed  Google Scholar 

  27. Lymperopoulos A, Negussie S (2013) βArrestins in cardiac G protein-coupled receptor signaling and function: partners in crime or “good cop, bad cop”? Int J Mol Sci 14:24726–24741

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maning J, Negussie S, Clark MA et al (2017) Biased agonism/antagonism at the AngII-AT1 receptor: implications for adrenal aldosterone production and cardiovascular therapy. Pharmacol Res 125:14–20

    Article  CAS  PubMed  Google Scholar 

  29. Lymperopoulos A, Brill A, McCrink KA (2016) GPCRs of adrenal chromaffin cells & catecholamines: the plot thickens. Int J Biochem Cell Biol 77:213–219

    Article  CAS  PubMed  Google Scholar 

  30. Lymperopoulos A, Garcia D, Walklett K (2014) Pharmacogenetics of cardiac inotropy. Pharmacogenomics 15:1807–1821

    Article  CAS  PubMed  Google Scholar 

  31. Jafferjee M, Reyes Valero T, Marrero C et al (2016) GRK2 upregulation creates a positive feedback loop for catecholamine production in chromaffin cells. Mol Endocrinol 30:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lymperopoulos A, Rengo G, Zincarelli C et al (2009) An adrenal beta-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci U S A 106:5825–5830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lymperopoulos A, Rengo G, Zincarelli C et al (2011) Adrenal beta-arrestin 1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J Am Coll Cardiol 57:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bathgate-Siryk A, Dabul S, Pandya K et al (2014) Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 63:404–412

    Article  CAS  PubMed  Google Scholar 

  35. Lymperopoulos A, Sturchler E, Bathgate-Siryk A et al (2014) Different potencies of angiotensin receptor blockers at suppressing adrenal β-Arrestin1-dependent post-myocardial infarction hyperaldosteronism. J Am Coll Cardiol 64:2805–2806

    Article  PubMed  Google Scholar 

  36. Dabul S, Bathgate-Siryk A, Valero TR et al (2015) Suppression of adrenal βarrestin1-dependent aldosterone production by ARBs: head-to-head comparison. Sci Rep 5:8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valero TR, Sturchler E, Jafferjee M et al (2016) Structure-activity relationship study of angiotensin II analogs in terms of β-arrestin-dependent signaling to aldosterone production. Pharmacol Res Perspect 4:e00226

    Article  PubMed  PubMed Central  Google Scholar 

  38. McCrink KA, Maning J, Vu A et al (2017) β-arrestin2 improves post-myocardial infarction heart failure via sarco(endo)plasmic reticulum Ca2+-ATPase-dependent positive Inotropy in cardiomyocytes. Hypertension 70:972–981

    Article  CAS  PubMed  Google Scholar 

  39. McCrink KA, Brill A, Jafferjee M et al (2016) β1-adrenoceptor Arg389Gly polymorphism confers differential β-arrestin-binding tropism in cardiac myocytes. Pharmacogenomics 17:1611–1620

    Article  CAS  PubMed  Google Scholar 

  40. Salazar NC, Vallejos X, Siryk A et al (2013) GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal 11:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McCrink KA, Maning J, Vu A et al (2017) Cardiac βarrestin2 improves contractility and adverse remodeling in heart failure, but is underexpressed in humans. J Am Coll Cardiol 70:2948–2949

    Article  PubMed  Google Scholar 

  42. Weis WI, Kobilka BK (2018) The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem 87:897–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hepler JR, Gilman AG (1992) G proteins. Trends Biochem Sci 17:383–387

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Lymperopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Borges, J.I., Carbone, A.M., Cora, N., Sizova, A., Lymperopoulos, A. (2022). GTPγS Assay for Measuring Agonist-Induced Desensitization of Two Human Polymorphic Alpha2B-Adrenoceptor Variants. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 2547. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2573-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2573-6_12

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2572-9

  • Online ISBN: 978-1-0716-2573-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics