Skip to main content

Advertisement

Log in

The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Preclinical data indicate a direct anti-tumor effect of zoledronic acid (ZA) outside the skeleton, but its molecular mechanism is still not completely clarified. The aim of this study was to investigate the anti-cancer effects of ZA in human breast cancer cell lines, suggesting that they may in part be mediated via the miR-21/PTEN/Akt signaling pathway. The effect of ZA on cell viability was measured by MTT assay, and cell death induction was analyzed using either a double AO/EtBr staining and M30 ELISA assay. A Proteome Profiler Human Apoptosis Array was executed to evaluate the molecular basis of ZA-induced apoptosis. Cell cycle analysis was executed by flow cytometry. The effect of ZA on miR-21 expression was quantified by qRT-PCR, and the amount of PTEN protein and its targets were analyzed by Western blot. ZA inhibited cell growth in a concentration- and time-dependent manner, through the activation of cell death pathways and arrest of cell cycle progression. ZA downregulated the expression of miR-21, resulting in dephosphorilation of Akt and Bad and in a significant increase of p21 and p27 proteins expression. These results were observed also in MDA-MB-231 cells, commonly used as an experimental model of bone metastasis of breast cancer. This study revealed, for the first time, an involvement of the miR-21/PTEN/Akt signaling pathway in the mechanism of ZA anti-cancer actions in breast cancer cells. We would like to underline that this pathway is present both in the hormone responsive BC cell line (MCF-7) as well as in a triple negative cell line (MDA-MB-231). Taken together these results reinforce the use of ZA in clinical practice, suggesting the role of miR-21 as a possible mediator of its therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez Brito M, Goulielmaki E, Papakonstanti EA (2015) Focus on PTEN regulation. Front Oncol 5:166. doi:10.3389/fonc.2015.00166

    Article  PubMed  PubMed Central  Google Scholar 

  • Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaissé JM, Clézardin P (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 60:2949–2954

    CAS  PubMed  Google Scholar 

  • Clézardin P (2005) Anti-tumour activity of zoledronic Acid. cancer Treat Rev 31(Suppl 3):1–8

    Article  PubMed  Google Scholar 

  • Clézardin P, Ebetino FH, Fournier PG (2005) Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res 65:4971–4974

    Article  PubMed  Google Scholar 

  • Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q, Rank G, Srivastava S, Finlay MJ, Papenfuss AT, Pandolfi PP, Pearson RB, Jane SM (2011) Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 20:635–648. doi:10.1016/j.ccr.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  • Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E (2015) Biology of the cell cycle inhibitor p21(CDKN1A):molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 89:155–178. doi:10.1007/s00204-014-1430-4

    Article  CAS  PubMed  Google Scholar 

  • Fehm T, Zwirner M, Wallwiener D, Seeger H, Neubauer H (2012) Antitumor activity of zoledronic acid in primary breast cancer cells determined by the ATP tumor chemosensitivity assay. BMC Cancer 23:12–308. doi:10.1186/1471-2407-12-308

    Google Scholar 

  • Fiorentini C, Bodei S, Bedussi F, Fragni M, Bonini SA, Simeone C, Zani D, Berruti A, Missale C, Memo M, Spano P, Sigala S (2014) GPNMB/OA protein increases the invasiveness of human metastatic prostate cancer cell lines DU145 and PC3 through MMP-2 and MMP-9 activity. Exp Cell Res 323:100–111. doi:10.1016/j.yexcr.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  • Fromigue O, Lagneaux L, Body JJ (2000) Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res 15:2211–2221

    Article  CAS  PubMed  Google Scholar 

  • Hägg M, Bivén K, Ueno T, Rydlander L, Björklund P, Wiman KG, Shoshan M, Linder S (2002) A novel high-through-put assay for screening of pro-apoptotic drugs. Investig New Drugs 20:253–259

    Article  Google Scholar 

  • Holen I, Coleman RE (2010) Bisphosphonates as treatment of bone metastases. Curr Pharm Des 16:1262–1271

    Article  CAS  PubMed  Google Scholar 

  • Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215. doi:10.1186/bcr2889

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim T, Liverani C, Mercatelli I, Sacanna E, ZanoniM FF, Zoli W, Amadori D (2013) Cisplatin in combination with zoledronic acid: a synergistic effect in triple-negative breast cancer cell lines. Int J Oncol 42:1263–1270. doi:10.3892/ijo.2013.1809

    CAS  PubMed  Google Scholar 

  • Jagdev SP, Coleman RE, Shipman CM, Rostami-H A, Croucher PI (2001) The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer 84:1126–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300. doi:10.3322/caac.20073

    Article  PubMed  Google Scholar 

  • Jiang BH, Liu LZ (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784:150–158

    Article  CAS  PubMed  Google Scholar 

  • Johnson DJ, Andersen C, Scriven KA, Klein AN, Choi MR, Carroll C, de Leon RD (2014) A molecular method to correlate bloodstains with wound site for crime scene reconstruction. J Forensic Sci 259:735–742. doi:10.1111/1556-4029.12377

    Article  Google Scholar 

  • Kohno N, Aogi K, Minami H, Nakamura S, Asaga T, Iino Y (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 23:3314–3321

    Article  CAS  PubMed  Google Scholar 

  • Li J, Cho YY, Langfald A, Carper A, Lubet RA, Grubbs CJ, Ericson ME, Bode AM (2011) Lapatinib, a preventive/therapeutic agent against mammary cancer, suppresses RTK-mediated signaling through multiple signaling pathways. Cancer Prev Res (Phila) 4:1190–1197. doi:10.1158/1940-6207.CAPR-10-0330

    Article  CAS  Google Scholar 

  • Li X, Wang K, Ren Y, Zhang L, Tang XJ, Zhang HM, Zhao CQ, Liu PJ, Zhang JM, He JJ (2014) MAPK signaling mediates sinomenine hydrochloride-induced human breast cancer cell death via both reactive oxygen species-dependent and -independent pathways: an in vitro and in vivo study. Cell Death Dis 5:e1356. doi:10.1038/cddis.2014.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim E, Metzger-Filho O, Winer EP (2012) The natural history of hormone receptor-positive breast cancer. Oncology 26(688–694):696

    Google Scholar 

  • Lin LQ, Li XL, Wang L, Du WJ, Guo R, Liang HH, Liu X, Liang DS, Lu YJ, Shan HL, Jiang HC (2012) Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cell Physiol Biochem 30:631–641. doi:10.1159/000341444

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Kumar M, Choudhury SN, Becker Buscaglia LE, Barker JR, Kanakamedala K, Liu MF, Li Y (2011) Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci U S A 304:1073–1081. doi:10.1073/pnas.1103735108

    Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironova EV, Evstratova AA, Antonov SM (2007) A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Methods 163:1–8

    Article  PubMed  Google Scholar 

  • Neville-Webbe HL, Evans CA, Coleman RE, Holen I (2006) Mechanisms of the synergistic interaction between the bisphosphonate zoledronic acid and the chemotherapy agent paclitaxel in breast cancer cells in vitro. Tumour Biol 27:92–103

    Article  CAS  PubMed  Google Scholar 

  • Noomhorm N, Chang CJ, Wen CS, Wang JY, Chen JL, Tseng LM, Chen WS, Chiu JH, Shyr YM (2014) In vitro and in vivo effects of xanthorrhizol on human breast cancer MCF-7 cells treated with tamoxifen. J Pharmacol Sci 125:375–385

    Article  CAS  PubMed  Google Scholar 

  • Oades GM, Senaratne SG, Clarke IA, Kirby RS, Colston KW (2003) Nitrogen containing bisphosphonates induce apoptosis and inhibit the mevalonate pathway, impairing Ras membrane localization in prostate cancer cells. J Urol 170:246–252

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka M, Ling H, Doki Y, Mori M, Calin GA (2015) MicroRNA Processing and Human Cancer. J Clin Med 4:1651–1667. doi:10.3390/jcm4081651

    Article  PubMed  PubMed Central  Google Scholar 

  • Peyruchaud O, Winding B, Pecheur I, Serre CM, Delmas P, Clezardin P (2001) Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J Bone Miner Res 16:2027–2034

    Article  CAS  PubMed  Google Scholar 

  • Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J (2011) Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49:34–41. doi:10.1016/j.bone.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  CAS  PubMed  Google Scholar 

  • Rosen LS, Gordon DH, Dugan W Jr, Major P, Eisenberg PD, Provencher L, Kaminski M, Simeone J, Seaman J, Chen BL, Coleman RE (2004) Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion. Cancer 100:36–43

    Article  CAS  PubMed  Google Scholar 

  • Russell G (2007) Bisphosphonates: mode of action and pharmacology. Pediatrics 119:S150–S162

    Article  PubMed  Google Scholar 

  • Schutte B, Henfling M, Kölgen W, Bouman M, Meex S, Leers MP, Nap M, Björklund V, Björklund P, Björklund B, Lane EB, Omary MB, Jörnvall H, Ramaekers FC (2004) Keratin 8/18 breakdown and reorganization during apoptosis. Exp Cell Res 297:11–26

    Article  CAS  PubMed  Google Scholar 

  • Senaratne SG, Colston KW (2002) Direct effects of bisphosphonates on breast cancer cells. Breast Cancer Res 4:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N (2005) The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stresing V, Daubiné F, Benzaid I, Mönkkönen H, Clézardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257:16–35

    Article  CAS  PubMed  Google Scholar 

  • Ventura A, Jacks T (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136:586–591. doi:10.1016/j.cell.2009.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdijk R, Franke HR, Wolbers F, Vermes I (2007) Differential effects of bisphosphonates on breast cancer cell lines. Cancer Lett 246:308–312

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Yu ML, Yu G, Bian JJ, Deng XM, Wan XJ, Zhu KM (2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 394:184–188. doi:10.1016/j.bbrc.2010.02.145

    Article  CAS  PubMed  Google Scholar 

  • Weng LP, Brown JL, Eng C (2001) PTEN coordinates G(1) arrest by down-regulating cyclin D1 via its protein phosphatase activity and up-regulating p27 via its lipid phosphatase activity in a breast cancer model. Hum Mol Genet 10:599–604

    Article  CAS  PubMed  Google Scholar 

  • Weng LP, Smith WM, Dahia PL, Ziebold U, Gil E, Lees JA, Eng C (1999) PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res 59:5808–5814

    CAS  PubMed  Google Scholar 

  • Winter MC, Holen I, Coleman RE (2008) Exploring the anti-tumour activity of bisphosphonates in early breast cancer. Cancer Treat Rev 34:453–475. doi:10.1016/j.ctrv.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  • Yamada KM, Araki M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114:2375–2382

    CAS  PubMed  Google Scholar 

  • Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, Zeng YX, Shao JY (2011) Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 13:R2. doi:10.1186/bcr2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi M, Vikulina T, Weitzmann MN (2015) Gentian violet inhibits MDA-MB-231 human breast cancer cell proliferation and reverses the stimulation of osteoclastogenesis and suppression of osteoblast activity induced by cancer cells. Oncol Rep 34:2156–2162. doi:10.3892/or.2015.4190

    PubMed  Google Scholar 

  • Yan T, Yin W, Zhou Q, Zhou L, Jiang Y, Du Y, Shao Z, Lu J (2012) The efficacy of zoledronic acid in breast cancer adjuvant therapy: a meta-analysis of randomised controlled trials. Eur J Cancer 48:187–195. doi:10.1016/j.ejca.2011.10.021

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359. doi:10.1038/cr.2008.24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by A.O. Istituti Ospitalieri di Cremona, Cremona (Italy) and by ARCO, Associazione Ricerca in Campo Oncologico, Cremona (Italy). Zoledronic Acid (Zometa®) was kindly given by Novartis Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fragni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragni, M., Bonini, S.A., Bettinsoli, P. et al. The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines. Naunyn-Schmiedeberg's Arch Pharmacol 389, 529–538 (2016). https://doi.org/10.1007/s00210-016-1224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1224-8

Keywords

Navigation