Skip to main content
Log in

An all-purpose Erdös-Kac theorem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In a seminal paper of 1917, Hardy and Ramanujan showed that the normal number of prime factors of a random natural number n is \(\log \log n\). Their paper is often seen as inspiring the development of probabilistic number theory in that it led Erdös and Kac to discover, in 1940, a Gaussian law implied by their work. In this paper, we derive an all-purpose Erdös-Kac theorem that is applicable in diverse settings. In particular, we apply our theorem to show the validity of an Erdös-Kac type theorem for the study of the number of prime factors of sums of Fourier coefficients of Hecke eigenforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: On the central limit theorem for the prime divisor function. Am Math. Mon. 76, 132–139 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cojocaru, A., Murty, M. Ram.: An introduction to sieve methods and their applications, London Mathematical Society Student Texts, 66, Cambridge University Press, (2005)

  3. Deligne, P.: Formes modulaires et représentations \(\ell \)-adiques, Sem. Bourbaki 355, Lecture Notes in Mathematics, 179, pp. 139-172, Sringer-Verlag, Heidelberg, (1971)

  4. Deligne, P.: La conjecture de Weil, I. Publ. Math. IHES 43, 273–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anup, B.: Dixit and M. Ram Murty, A localized Erdös-Kac theorem, Hardy-Ramanujan Journal 43, 17–23 (2021)

  6. Erdös, P.: On the number of prime factors of \(p-1\) and some related problems concerning Euler’s \(\phi \)-function. Q. J. Math. 6, 205–213 (1935)

    Article  MATH  Google Scholar 

  7. Erdös, P., Kac, M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erdös, P., Pomerance, C.: On the normal number of prime factors of \(\varphi (n)\). Rocky Mountain J. 15(2), 343–352 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (1966)

    MATH  Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory, A First Course, Graduate Texts in Mathematics, Readings in Mathematics, 129. Springer, New York (1991)

    Google Scholar 

  11. Halberstam, H.: On the distribution of additive number theoretic functions. J. Lond. Math. Soc. 30, 43–53 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halberstam, H.: On the distribution of additive number theoretic functions, III. J. Lond. Math. Soc. 31, 4–27 (1956)

    MathSciNet  MATH  Google Scholar 

  13. Hardy, G.H., Ramanujan, S.: The normal number of prime factors of a number \(n\). Q. J. Math. 48, 76–92 (1917)

    MATH  Google Scholar 

  14. Joshi, K.: Remarks on the Fourier coefficients of modular forms. J. Number Theory 132, 1314–1336 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kac, M.: Probability methods in some problems of analysis and number theory. Bull. Am. Math. Soc. 55, 641–665 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kubilius, J., Methods, Probabilistic, in the Theory of Numbers, Volume 2, Translations of Math. Monographs,: American Math. Society, Providence, Rhode Island (1964)

  17. Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Fröhlich, A. (ed.) Algebraic Number Fields, pp. 409–464. Academic Press, New York (1977)

    Google Scholar 

  18. Lagarias, J.C., Montgomery, H.L., Odlyzko, A.M.: A bound for the least prime ideal in the Chebotarev density theorem. Inventiones Math. 54, 271–296 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lehmer, D.H.: The vanishing of Ramanujan’s function \(\tau (n)\). Duke Math. J. 14, 483–492 (1947)

    Article  MathSciNet  Google Scholar 

  20. Liu, Yu.-Ru.: Prime analogues of the Erdös-Kac theorem for elliptic curves. J. Number Theory 119, 155–170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Loeffler, D.: Images of Galois representations for modular forms. Glasgow Math. J. 59, 11–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. An application of sieve methods to elliptic curves: Miri, S. A., Murty, V. Kumar. Lecture Notes Comput. Sci. 2247, 91–98 (2001)

    Google Scholar 

  23. Momose, F.: On the \(\ell \)-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 28(1), 89-109 (1981)

  24. Mordell, L.J.: On Mr. Ramanujan’s empirical expansions of modular functions, Proc. Cambridge Phil. Soc., 19, 117-124 (1919)

  25. Murty, M. Ram., Murty, V. Kumar.: Prime divisors of Fourier coefficients of modular forms, Duke Math. Journal, 51(1), 57-76 (1984)

  26. Murty, M. Ram., Murty, V. Kumar.: An analogue of the Erdös-Kac theorem for Fourier coefficients of modular forms, Indian J. Pure Appl. Math., 15, 1090-1101 (1984)

  27. Murty, M. Ram., Murty, V. Kumar., Pujahari, S.: On the normal number of prime factors of sums of Fourier coefficients of Hecke eigenforms, J. Number Theory, 233, 59-77 (2022)

  28. Murty, M. Ram., Murty, V. Kumar., Saradha, N. Modular forms and the Chebotarev density theorem: Am. J. Math. 110, 253–281 (1988)

  29. Murty, M. Ram., Pujahari, Sudhir.: Distinguishing Hecke eigenforms, Proceedings of the American Math. Society, 145(5), 1899-1904 (2017)

  30. Murty, V. Kumar.: Modular forms and the Chebotarev density theorem II, in Analytic Number Theory, edited by Y. Motohashi, London Mathematical Society Lecture Note Series 247, Cambridge University Press, pp. 287-308 (1997)

  31. Murty, V.K.: Explicit formulae and the Lang-Trotter conjecture. Rocky Mountain J. Math. 15, 535–551 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Murty, M.R., Saidak, F.: Non-abelian generalizations of the Erdös-Kac theorem. Can. J. Math. 56(2), 356–372 (2004)

    Article  MATH  Google Scholar 

  33. Ramanujan, S.: On certain arithmetical functions. Trans. Cambridge Phil. Soc. 22(9), 159–184 (1916)

    MATH  Google Scholar 

  34. Ribet, K.: On \(\ell \)-adic representations attached to modular forms. Inventiones Math. 28, 245–275 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serre, J.-P.: Quelques applications de théorème de densité de Chebotarev. Publ. Math. IHES 54, 323–401 (1981)

    Article  MATH  Google Scholar 

  36. Stark, H.M.: Some effective cases of the Brauer–Siegel theorem. Inventiones Math. 23, 135–152 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tenenbaum, G.: Moyennes effectives de fonctions multiplicatives complexes. Ramanujan J. 44(3), 641–701 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tuŕan, P.: On a theorem of Hardy and Ramanujan. J. Lond. Math. Soc. 9, 274–276 (1934)

Download references

Acknowledgements

We thank Siddhi Pathak and the referee for their helpful remarks on earlier versions of this paper

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ram Murty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the first two authors was partially supported by an NSERC Discovery grant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murty, M.R., Murty, V.K. & Pujahari, S. An all-purpose Erdös-Kac theorem. Math. Z. 305, 45 (2023). https://doi.org/10.1007/s00209-023-03370-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03370-y

Mathematics Subject Classification

Navigation