Skip to main content
Log in

Berkovich dynamics of Newton maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \({\mathbb {L}}\) be the completion of the formal Puiseux series over \({\mathbb {C}}\), and let \({\textbf{P}}^1\) be the Berkovich space over \({\mathbb {L}}\). We study the dynamics of Newton maps, defined over \({\mathbb {L}}\), on \({\textbf{P}}^1\). As an application, we give a complete description of the rescaling limits for a holomorphic family of complex Newton maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Arfeux, M.: Dynamics on trees of spheres. J. Lond. Math. Soc. 95(1), 177–202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line. Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  3. Beardon, A.: Complex Analytic Dynamical Systems. Iteration of Rational Functions. Graduate Texts in Mathematics, vol. 132. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  4. Benedetto, R.: Dynamics in One Non-Archimedean Variable. Graduate Studies in Mathematics, vol. 198. American Mathematical Society, Providence, RI (2019)

    MATH  Google Scholar 

  5. Benedetto, R., Ingram, P., Jones, R., Levy, A.: Attracting cycles in \(p\)-adic dynamics and height bounds for postcritically finite maps. Duke Math. J. 163(13), 2325–2356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berkovich, V.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence, RI (1990)

    MATH  Google Scholar 

  7. Bézivin, J.-P.: Sur les points périodiques des applications rationnelles en dynamique ultramétrique. Acta Arith. 100(1), 63–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cayley, A.: Desiderata and suggestions: no. 3.the Newton–Fourier imaginary problem. Am. J. Math. 2(1), 97 (1879)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeMarco, L.: Iteration at the boundary of the space of rational maps. Duke Math. J. 130(1), 169–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. DeMarco, L.: The moduli space of quadratic rational maps. J. Am. Math. Soc. 20(2), 321–355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. DeMarco, L., Faber, X.: Degenerations of complex dynamical systems II: analytic and algebraic stability. Math. Ann. 365(3–4), 1669–1699 (2016). (With an appendix by Jan Kiwi)

    Article  MathSciNet  MATH  Google Scholar 

  12. Faber, X.: Topology and geometry of the Berkovich ramification locus for rational functions. I. Manuscr. Math. 142(3–4), 439–474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faber, X.: Topology and geometry of the Berkovich ramification locus for rational functions. II. Math. Ann. 356(3), 819–844 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Favre, C., Gauthier, T.: Continuity of the Green function in meromorphic families of polynomials. Algebr. Number Theory 12(6), 1471–1487 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hsia, L.-C.: Closure of periodic points over a non-Archimedean field. J. Lond. Math. Soc. (2) 62(3), 685–700 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hubbard, J., Schleicher, D., Sutherland, S.: How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146(1), 1–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jonsson, M.: Dynamics of Berkovich spaces in low dimensions. In: Berkovich Spaces and Applications. Lecture Notes in Mathematics, vol. 2119, pp. 205–366. Springer, Cham (2015)

    Chapter  MATH  Google Scholar 

  18. Kiwi, J.: Puiseux series polynomial dynamics and iteration of complex cubic polynomials. Ann. Inst. Fourier (Grenoble) 56(5), 1337–1404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiwi, J.: Puiseux series dynamics of quadratic rational maps. Israel J. Math. 201(2), 631–700 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiwi, J.: Rescaling limits of complex rational maps. Duke Math. J. 164(7), 1437–1470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lodge, R., Mikulich, Y., Schleicher, D.: Combinatorial properties of Newton maps. Indiana Univ. Math. J. 70(5), 1833–1867 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lodge, R., Mikulich, Y., Schleicher, D.: A classification of postcritically finite Newton maps. In: In the Tradition of Thurston II. Geometry and Groups, pp. 421–448. Springer, Cham (2022)

    Chapter  MATH  Google Scholar 

  23. McMullen, C.: Families of rational maps and iterative root-finding algorithms. Ann. Math. (2) 125(3), 467–493 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikulich, Y.: Newton’s Method as a Dynamical System. PhD thesis, Jacobs University, Bremen (2011)

  25. Milnor, J.: Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160, 3rd edn. Princeton University Press, Princeton, NJ (2006)

    MATH  Google Scholar 

  26. Nie, H.: Compactifications of the Moduli Spaces of Newton Maps. arXiv:1803.08391 (2018)

  27. Nie, H., Pilgrim, K.: Boundedness of hyperbolic components of Newton maps. Israel J. Math. 238(2), 837–869 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rivera-Letelier, J.: Dynamique des fonctions rationnelles sur des corps locaux. Geometr. Methods Dyn. II Astér. 287, 147–230 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Rivera-Letelier, J.: Espace hyperbolique \(p\)-adique et dynamique des fonctions rationnelles. Compos. Math. 138(2), 199–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rivera-Letelier, J.: Points périodiques des fonctions rationnelles dans l’espace hyperbolique \(p\)-adique. Comment. Math. Helv. 80(3), 593–629 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Roesch, P.: On local connectivity for the Julia set of rational maps: Newton’s famous example. Ann. Math. (2) 168(1), 127–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rumely, R.: A new equivariant in nonarchimedean dynamics. Algebr. Number Theory 11(4), 841–884 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Silverman, J.: The space of rational maps on \({\textbf{P} }^1\). Duke Math. J. 94(1), 41–77 (1998)

    Article  MathSciNet  Google Scholar 

  34. Silverman, J.: The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)

    MATH  Google Scholar 

  35. Trucco, E.: Wandering Fatou components and algebraic Julia sets. Bull. Soc. Math. France 142(3), 411–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. von Haeseler, F., Peitgen, H.-O.: Newton’s method and complex dynamical systems. Acta Appl. Math. 13(1–2), 3–58 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partial results in this work are from the author’s thesis. He would like to thank his advisor Kevin Pilgrim for fruitful discussions. He also thanks Jan Kiwi, Laura DeMarco and Juan Rivera-Letelier for valuable comments and thanks Matthieu Arfeux and Ken Jacobs for useful conversations. The author is grateful to the referee for careful reading and invaluable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongming Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H. Berkovich dynamics of Newton maps. Math. Z. 304, 67 (2023). https://doi.org/10.1007/s00209-023-03324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-023-03324-4

Keywords

Mathematics Subject Classification

Navigation