Skip to main content
Log in

Twistor geometry of the Flag manifold

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A study is made of algebraic curves and surfaces in the flag manifold \(\mathbb {F}=SU(3)/T^2\), and their configuration relative to the twistor projection \(\pi \) from \(\mathbb {F}\) to the complex projective plane \(\mathbb {P}^{2}\), defined with the help of an anti-holomorphic involution \(j\). This is motivated by analogous studies of algebraic surfaces of low degree in the twistor space \(\mathbb {P}^3\) of the 4-dimensional sphere \(S^4\). Deformations of twistor fibers project to real surfaces in \(\mathbb {P}^{2}\), whose metric geometry is investigated. Attention is then focussed on toric del Pezzo surfaces that are the simplest type of surfaces in \(\mathbb {F}\) of bidegree \((1,1)\). These surfaces define orthogonal complex structures on specified dense open subsets of \(\mathbb {P}^{2}\) relative to its Fubini-Study metric. The discriminant loci of various surfaces of bidegree \((1,1)\) are determined, and bounds given on the number of twistor fibers that are contained in more general algebraic surfaces in \(\mathbb {F}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acharya, B.S., Bryant, R.L., Salamon, S.: A circle quotient of a \(G_2\) cone. Differ. Geom. Appl. 73, 101681 (2020)

    Article  MATH  Google Scholar 

  2. Altavilla, A., Ballico, E.: Twistor lines on algebraic surfaces. Ann. Glob. Anal. Geom. 55(3), 555–573 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altavilla, A., Ballico, E.: Three topological results on the twistor discriminant locus in the \(4\)-sphere. Milan J. Math. 87(1), 57–72 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Altavilla, A., Ballico, E.: Algebraic surfaces with infinitely many twistor lines. Bull. Aust. Math. Soc. 101(1), 61–70 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Altavilla, A., Ballico, E., Brambilla, M.C.: Surfaces in the flag threefold containing smooth conics and twistor fibers. Mediterr. J. Math. 19, 281 (2022). https://doi.org/10.1007/s00009-022-02202-3

  6. Altavilla, A., Sarfatti, G.: Slice-polynomial functions and twistor geometry of ruled surfaces in \(\mathbb{C}\mathbb{P} ^3\). Math. Z. 291(3–4), 1059–1092 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Armstrong, J.: The twistor discriminant locus of the fermat cubic. New York J. Math. 21, 485–510 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Armstrong, J., Povero, M., Salamon, S.: Twistor lines on cubic surfaces. Rend. Semin. Mat. Univ. Politec. Torino 71(3–4), 317–338 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Armstrong, J., Salamon, S.: Twistor topology of the fermat cubic. SIGMA Symmetry Integrability Geom. Methods Appl. 10(Paper 061), 12 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A 362(1711), 425–461 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bradley, M. J., D’Souza, H. J.: On the orders of automorphism groups of complex projective hypersurfaces,. In: Lanteri, A. et al. (Ed.). Geometry of complex projective varieties, Proceedings of the conference, Cetraro, Italy, May 28–June 2, (1990), Rende Mediterranean press, Semin. Conf. 9, pp. 75–88 (1993)

  12. Bredon, G.E.: Topology and Geometry, Graduate Texts in Mathematics, vol. 139, p. xiv+557. Springer, New York (1997)

    MATH  Google Scholar 

  13. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19–53 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burstall, F.E.: Minimal Surfaces in Quaternionic Symmetric Spaces, in Geometry of Low-Dimensional Manifolds, pp. 231–235. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  15. Burstall, F.E., Salamon, S.M.: Tournaments, flags and harmonic maps. Math. Annalen 277(2), 249–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chirka, E.M.: Orthogonal complex structures in \({\mathbb{R} }^{4}\). Uspekhi Mat. Nauk 73(1(439)), 99–172 (2018). (Translation in Russian Math. Surveys 73 (2018), no. 1, 91–159)

    MathSciNet  Google Scholar 

  17. Demazure, M.: Surfaces de del Pezzo, I, II, III, IV, V, Séminaire sur les Singularités des Surfaces, Palaiseau, France 1976–1977. Lecture Notes in Mathematics, vol. 777. Springer, Berlin (1980)

    Google Scholar 

  18. Dolgachev, I.: Classical Algebraic Geometry. Classical Algebraic Geometry. A Modern View. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  19. Eells, J., Salamon, S.: Twistorial construction of harmonic maps of surfaces into four-manifolds. Ann. Sc. Norm. Sup. Pisa (4) 12(4), 589–640 (1985)

    MathSciNet  MATH  Google Scholar 

  20. Eells, J., Wood, J.C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49, 217–263 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gauduchon, P.: Pseudo-immersions superminimales d’une surface de Riemann dans une vari riemannienne de dimension 4. Bull. Soc. Math. France 114(4), 447–508 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gentili, G., Salamon, S., Stoppato, C.: Twistor transforms of quaternionic functions and orthogonal complex structures. J. Eur. Math. Soc. 16(11), 2323–2353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gray, A., Abbena, E., Salamon, S.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd edn. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  24. Griffiths, J.P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics, p. xii+813. Wiley, New York (1978). (ISBN: 0-471-32792-1)

    MATH  Google Scholar 

  25. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  26. Hitchin, N.J.: Kählerian twistor spaces. Proc. Lond. Math. Soc. (3) 43(1), 133–150 (1981)

    Article  MATH  Google Scholar 

  27. Hitchin, N.J.: A New Family of Einstein Metrics. Manifolds and Geometry (Pisa,: Sympos. Math. XXXVI), vol. 1996, pp. 190–222. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  28. Hughston, L., Salamon, S.: Surveying points in the complex projective plane. Adv. Math. 286, 1017–1052 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Landsberg, J.M.: Tensors: Geometry and Applications, vol. 128. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  30. LeBrun, C.: Anti-self-dual metrics and Kähler geometry. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994). Birkhäuser, Basel, pp. 498–507 (1995)

  31. C. LeBrun Geometry of Twistor Spaces. Simons Workshop Lecture, 7/30/04 Lecture Notes by Jill McGowan. http://insti.physics.sunysb.edu/conf/simonsworkII/talks/LeBrun.pdf

  32. Malaspina, F., Marchesi, S., Pons-Llopis, J.F.: Instanton bundles on the flag variety \(F(0,1,2)\). Ann. Sc. Norm. Super Pisa Cl. Sci. (5) 20(4), 1469–1505 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Mare, A.-L., Willems, M.: Topology of the octonionic flag manifold. Münster J. Math. 6, 483–523 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Muskarov, O.: Almost Hermitian structures on twistor spaces and their types. C. R. Acad. Sci. I-Math. 305(7), 307–309 (1987)

    MathSciNet  Google Scholar 

  35. O’Brian, N.R., Rawnsley, J.H.: Twistor spaces. Ann. Glob. Anal. Geom. 3, 29–58 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces. Modern Birkhäuser Classics. Birkhä user, Basel (2011)

    MATH  Google Scholar 

  37. Salamon, S., Viaclovsky, J.: Orthogonal complex structures on domains in \(\mathbb{R} ^4\). Math. Ann. 343(4), 853–899 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shapiro, G.: On discrete differential geometry in twistor space. J. Geom. Phys. 68, 81–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tango, H.: On the automorphisms of flag manifolds. Bull. Kyoto Univ. Ed. Ser. B 49, 1–9 (1976)

    MathSciNet  MATH  Google Scholar 

  40. Wehler, J.: K3-surfaces with Picard number 2. Arch. Math. 50, 73–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The fourth author is grateful to Fran Burstall and Nick Shepherd-Barron for explaining relevant facts to him. We thank the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amedeo Altavilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors were partially supported as follows:AA by GNSAGA and the INdAM project ‘Teoria delle funzioni ipercomplesse e applicazioni’, MCB by GNSAGA and by the PRIN project ‘Geometria delle varietà algebriche’, SS by the Simons Foundation (#488635, Simon Salamon).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altavilla, A., Ballico, E., Brambilla, M.C. et al. Twistor geometry of the Flag manifold. Math. Z. 303, 24 (2023). https://doi.org/10.1007/s00209-022-03161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-022-03161-x

Keywords

Mathematics Subject Classification

Navigation