Skip to main content
Log in

Extendability and the \(\overline{\partial }\) operator on the Hartogs triangle

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper it is shown that the Hartogs triangle \({\mathbf{T}}\) in \({\mathbf{C}}^2\) is a uniform domain. This implies that the Hartogs triangle is a Sobolev extension domain. Furthermore, the weak and strong maximal extensions of the Cauchy-Riemann operator agree on the Hartogs triangle. These results have numerous applications. Among other things, they are used to study the Dolbeault cohomology groups with Sobolev coefficients on the complement of \({\mathbf{T}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azzam, J., Hofmann, S., Martell, J.M., Nyström, K., Toro, T.: A new characterization of chord-arc domains. J. Eur. Math. Soc. 19, 967–981 (2017)

    Article  MathSciNet  Google Scholar 

  2. Chakrabarti, D., Laurent-Thiébaut, C., Shaw, M.-C.: On the \({L}^2\)-Dolbeault cohomology of annuli. Indiana Univ. Math. J. 67, 831–857 (2018)

    Article  MathSciNet  Google Scholar 

  3. Chakrabarti, D., Shaw, M.-C.: The Cauchy-Riemann equations on product domains. Math. Ann. 349, 977–998 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chakrabarti, D., Shaw, M.-C.: \(L^2\) Serre duality on domains in complex manifolds and applications. Trans. Amer. Math. Soc. 364, 3529–3554 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chakrabarti, D., Shaw, M.-C.: Sobolev regularity of the \(\overline{\partial }\)-equation on the Hartogs triangle. Math. Ann. 356, 241–258 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chakrabarti, D., Shaw, M.-C.: The \(L^2\)-cohomology of a bounded smooth Stein domain is not necessarily Hausdorff. Math. Ann. 363, 1001–1021 (2015)

    Article  MathSciNet  Google Scholar 

  7. D. Chakrabarti and Y. Zeytuncu \(L^p\) mapping properties of the Bergman projection on the Hartogs triangle, Proc. Amer. Math. Soc. 144 (2016), 1643-1653

  8. L. Chen and J. D. McNeal A solution operator for \(\overline{\partial }\) on the Hartogs triangle and \(L^p\) estimates, Math. Ann. 376 (2020), 407-430

  9. S.-C. Chen and M.-C. Shaw, Partial Differential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics, vol. 19, International Press, 2001

  10. Chaumat, J., Chollet, A.-M.: Régularité höldérienne de l’opérateur \(\overline{\partial }\) sur le triangle de Hartogs. Ann. Inst. Fourier (Grenoble) 41, 867–882 (1991)

    Article  MathSciNet  Google Scholar 

  11. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, 1992

  12. Fu, S., Laurent-Thiébaut, C., Shaw, M.-C.: Hearing pseudoconvexity in Lipschitz domains with holes with \(\overline{\partial }\). Math. Zeit. 287, 1157–1181 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gallagher, A.-K., Gupta, P., Lanzani, L., Vivas, L.: Hardy spaces for a class of singular domains. Math. Zeit. 299, 2171–2197 (2021)

    Article  MathSciNet  Google Scholar 

  14. F. W. Gehring and B. G. Osgood Uniform domains and quasihyperbolic metric, J. Anal. Math. 36 (1979), 50–74

  15. Harrington, P.S.: Sobolev estimates for the Cauchy-Riemann complex on \(C^1\) pseudoconvex domains. Math. Zeit. 262, 199–217 (2009)

    Article  Google Scholar 

  16. Hörmander, L.: Weak and strong extension of differential operators. Comm. Pure Appl. Math. 14, 371–379 (1961)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\overline{\partial }\) operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  Google Scholar 

  18. Hörmander, L.: A history of existence theorems for the Cauchy-Riemann complex in \(L^2\) spaces. J. Geometric Anal. 13, 229–357 (2003)

    Google Scholar 

  19. Hörmander, L.: The null space of the \(\overline{\partial }\)-Neumann operator. Ann. Inst. Fourier (Grenoble) 54, 1305–1369 (2004)

    Article  MathSciNet  Google Scholar 

  20. D. Jerison and C. Kenig Boundary behavior of harmonic functions in non-tangentially accessible domains Adv. in Math. 46 (1982), 80–147

  21. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta. Math. 147, 71–88 (1981)

    Article  MathSciNet  Google Scholar 

  22. Jonsson, A.: The trace of potentials on general sets. Ark. Mat. 17(1), 1–18 (1979)

    Article  MathSciNet  Google Scholar 

  23. J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds, I, Ann. of Math. (2) 78 (1963), 112–148

  24. J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds, II, Ann. of Math. (2) 79 (1964), 450–472

  25. Kohn, J.J.: Global regularity for \(\overline{\partial }\) on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc. 181, 273–292 (1973)

    MathSciNet  MATH  Google Scholar 

  26. Laurent-Thiébaut, C., Shaw, M.-C.: On the Hausdorff property of some Dolbeault cohomology groups. Math. Zeit. 274, 1165–1176 (2013)

    Article  MathSciNet  Google Scholar 

  27. C. Laurent-Thiébaut and M.-C. Shaw, Non-closed range property for the Cauchy-Riemann operator. Analysis and Geometry, Springer Proc. Math. Stat. 127 (2015), 207–218

  28. Laurent-Thiébaut, C., Shaw, M.-C.: Solving \(\overline{\partial }\) with prescribed support on Hartogs triangles in \(\mathbf{C}^2\) and \(\mathbf{CP}^2\). Trans. Amer. Math. Soc. 271, 6531–6546 (2019)

    MATH  Google Scholar 

  29. O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979) No. 2, 383–401

  30. Mitrea, D., Mitrea, M., Shaw, M.-C.: Traces of differential forms on Lipschitz domains, the boundary de Rham complex, and Hodge decompositions. Indiana Univ. Math. J. 57, 2061–2095 (2008)

    Article  MathSciNet  Google Scholar 

  31. C. B. Morrey, Multiple Integrals in the Calculus of Variations. Springer Verlag, 1966

  32. F. Riesz and B. Sz.-Nagy, Functional Analysis. Dover Publication Inc., 1990

  33. Shaw, M.-C.: Global solvability and regularity for \(\overline{\partial }\) on an annulus between two weakly pseudoconvex domains. Trans. Amer. Math. Soc. 291, 255–267 (1985)

    MathSciNet  MATH  Google Scholar 

  34. M.-C. Shaw, The closed range property for \(\bar{\partial }\) on domains with pseudoconcave boundary. Complex Analysis: Several complex variables and connections with PDEs and geometry (Fribourg 2008), P. Ebenfelt, N. Hungerbuhler, J. Kohn, N. Mok, E. Straube (Eds), in the series: Trends in Mathematics, Springer, 2010, 307–320

  35. M.-C. Shaw, The Hartogs triangle in complex analysis. Geometry and topology of submanifolds and currents, 105–115. Contemp. Math., 646, Amer. Math. Soc., 2015

  36. Sibony, N.: Prolongement des fonctions holomorphes bornées et métrique de Carathéodory. Invent. Math. 29, 205–230 (1975)

    Article  MathSciNet  Google Scholar 

  37. E. M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Math. Series, No. 30, Princeton University Press, 1970

  38. Trapani, S.: Inviluppi di olomorfia et gruppi di coomologia di Hausdorff. Rend. Sem. Mat. Univ. Padova 75, 25–37 (1986)

    MathSciNet  Google Scholar 

  39. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York-London (1967)

    MATH  Google Scholar 

  40. J. Väisälä Uniform domains, Tohoku Math. J. 40 1988, 101-118

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Chi Shaw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Burchard is partially supported by an NSERC discovery grant. G. Lu and J. Flynn are partially supported by the Simons foundation. M.-C. Shaw is partially supported by NSF grants. A. Burchard and M.-C. Shaw would like to thank the Banff International Research Station for its kind hospitality during a 2019 workshop which facilitated this collaboration. We would also like to thank Christine Laurent-Thiébaut for her helpful comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burchard, A., Flynn, J., Lu, G. et al. Extendability and the \(\overline{\partial }\) operator on the Hartogs triangle. Math. Z. 301, 2771–2792 (2022). https://doi.org/10.1007/s00209-022-03008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03008-5

Mathematics Subject Classification

Navigation