Skip to main content
Log in

Sobolev regularity of the \(\overline{\partial }\)-equation on the Hartogs triangle

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

The regularity of the \(\overline{\partial }\)-problem on the domain \(\{\left|{z_1}\right|\!<\!\left|{z_2}\right|\!<\!1\}\) in \(\mathbb C ^2\) is studied using \(L^2\)-methods. Estimates are obtained for the canonical solution in weighted \(L^2\)-Sobolev spaces with a weight that is singular at the point \((0,0)\). In particular, the singularity of the Bergman projection for the Hartogs triangle is contained at the singular point and it does not propagate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace–Beltrami equation on complex manifolds. Inst. Hautes Études Sci. Publ. Math. 25, 81–130 (1965)

    Google Scholar 

  2. Barrett, D.: Behavior of the Bergman projection on the Diederich–Fornaess worm. Acta Math. 168, 1–10 (1992)

    Google Scholar 

  3. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chakrabarti, D., Shaw, M.-C.: The Cauchy–Riemann equations on product domains. Math. Ann. 349(4), 977–998 (2011)

    Google Scholar 

  5. Chaumat, J., Chollet, A.-M.: Régularité höldérienne de l’opérateur \(\overline{\partial }\)-sur le triangle de Hartogs. Ann. Inst. Fourier (Grenoble) 41(4), 867–882 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.-C., Shaw, M.-C.: Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19. American Mathematical Society/International Press, Providence/Boston (2001)

  7. Dufresnoy, A.: Sur l’opérateur \(d^{\prime \prime }\) et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier (Grenoble) 29, 229–238 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ehsani, D., Lieb, I.: \(L^{p}\)-estimates for the Bergman projection on strictly pseudoconvex non-smooth domains. Math. Nachr. 281(7), 916–929 (2008)

  9. Ehsani, D.: Integral representations on nonsmooth domains. Ill. J. Math. 53(4), 1127–1156 (2009)

    Google Scholar 

  10. Ehsani, D.: Weighted \(C^{k}\)-estimates for a class of integral operators on nonsmooth domains. Mich. Math. J. 59(3), 589–620 (2010)

  11. Hörmander, L.: \(L^{2}\) estimates and existence theorems for the \(\overline{\partial }\)-operator. Acta Math. 113, 89–152 (1965)

    Google Scholar 

  12. Horváth, J.: Topological vector spaces and distributions, vol. I. Addison-Wesley Publishing Co., Reading (1966)

  13. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. Graduate Studies in Mathematics, vol. 15. American Mathematical Society, Providence (1997)

  14. Kiselman, C.O.: A study of the Bergman projection in certain Hartogs domains. In: Proceedings in pure mathematics, vol. 52, part 3, pp. 219–231 (1991)

  15. Kohn, J.J.: Global regularity for \(\overline{\partial }\) on weakly pseudoconvex manifolds. Trans. Am. Math. Soc. 181, 273–292 (1973)

    Google Scholar 

  16. Ma, L., Michel, J.: \(C^{k+\alpha }\)-estimates for the \(\overline{\partial }\)-equation on the Hartogs triangle. Math. Ann. 294(4), 661–675 (1992)

  17. Sibony, N.: Some aspects of weakly pseudoconvex domains. In: Proceedings of symposia in pure mathematics, vol. 52, Part I. American Mathematical Society, Providence, pp. 199–231 (1991)

  18. Straube, E.J.: Lectures on the \(\cal L^{2}\)-Sobolev theory of the \(\overline{\partial }\)-Neumann problem. European Mathematical Society, Zürich (2010)

Download references

Acknowledgments

The authors thank the referee for his detailed comments and suggestions. D. Chakrabarti thanks Dr. S. Gorai for pointing out an error in the first version of this paper, and Prof. M. Vanninathan for helpful hints on Sobolev spaces on nonsmooth domains. He also thanks Prof. M. Ramaswamy, the Dean of the TIFR Centre for Applicable Mathematics, for her active support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Chakrabarti.

Additional information

Dedicated to the memory of Prof. Jianguo Cao.

M.-C. Shaw is partially supported by NSF grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, D., Shaw, MC. Sobolev regularity of the \(\overline{\partial }\)-equation on the Hartogs triangle. Math. Ann. 356, 241–258 (2013). https://doi.org/10.1007/s00208-012-0840-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0840-y

Mathematics Subject Classification (1991)

Navigation