Skip to main content
Log in

A characteristic map for the holonomy groupoid of a foliation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove a generalisation of Bott’s vanishing theorem for the full transverse frame holonomy groupoid of any transversely orientable foliated manifold. As a consequence we obtain a characteristic map encoding both primary and secondary characteristic classes. Previous descriptions of this characteristic map are formulated for the Morita equivalent étale groupoid obtained via a choice of complete transversal. By working with the full holonomy groupoid we obtain novel geometric representatives of characteristic classes. In particular we give a geometric, non-étale analogue of the codimension 1 Godbillon–Vey cyclic cocycle of Connes and Moscovici in terms of line integrals of the curvature form of a Bott connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. i.e. locally leafwise

References

  1. Benameur, M.T.: Triangulations and the stability theorem for foliations. Pac. J. Math. 179, 221–239 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bott, R.: On a topological obstruction to integrability. Proc. Sympos. Pure Math. 16, 127–131 (1970)

    Article  MathSciNet  Google Scholar 

  3. Bott, R.: Lectures on Characteristic Classes and Foliations, Lectures on Algebraic and Differential Topology, vol. 279. Springer, Berlin (1972)

    Book  Google Scholar 

  4. Bott, R.: On characteristic classes in the framework of Gelfand–Fuks cohomology. Astérique 32–33, 113–139 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Bott, R., Shulman, H., Stasheff, J.: On the de Rham theory of certain classifying spaces. Adv. Math. 20, 43–56 (1976)

    Article  MathSciNet  Google Scholar 

  6. Chen, K.T.: Iterated integrals of differential forms and loop space homology. Ann. Math. 97, 217–246 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chen, K.T.: Iterated path integrals. Bull. Am. Math. Soc. 83, 831–879 (1977)

    Article  MathSciNet  Google Scholar 

  8. Connes, A.: An analogue of the Thom isomorphism for crossed products of a \(C^{*}\)-algebra by an action of \({\mathbb{R}}\). Adv. Math. 39, 31–55 (1981)

    Article  MathSciNet  Google Scholar 

  9. Connes, A.: A survey of foliations and operator algebras. Proc. Sympos. Pure 38, 521 (1982)

    Article  MathSciNet  Google Scholar 

  10. Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation. In: Araki, H., Effros, E.G. (eds.) Geometric Methods in Operator Algebras (Kyoto, 1983), pp. 52–144. Longman Scientific and Technical, Harlow (1986)

    Google Scholar 

  11. Connes, A.: Noncommutative Geometry. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Connes, A., Moscovici, M.: The local index formula in noncommutative geometry. GAFA 5, 174–243 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Connes, A., Moscovici, H.: Hopf algebras, cyclic cohomology and transverse index theory. Commun. Math. Phys. 198, 199–246 (1998)

    Article  Google Scholar 

  14. Connes, A., Moscovici, H.: Differentiable cyclic cohomology and Hopf algebraic structures in transverse geometry. Essays on Geometry and Related Topics, Monographie de L’Enseignement Mathématique, vol. 38, Université de Genève, Geneva, pp. 217–255 (2001)

  15. Connes, A., Moscovici, H.: Background independent geometry and Hopf cyclic cohomology. arXiv:math/0505475v1 (2015)

  16. Crainic, M., Moerdijk, I.: Foliation groupoids and their cyclic homology. Adv. Math. 157, 177–197 (2001)

    Article  MathSciNet  Google Scholar 

  17. Crainic, M., Moerdijk, I.: Cech–De Rham theory for leaf spaces of foliations. Math. Ann. 328, 59–85 (2004)

    Article  MathSciNet  Google Scholar 

  18. Dupont, J.: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15, 233–245 (1976)

    Article  MathSciNet  Google Scholar 

  19. Getzler, E., Jones, J.D.S., Petrack, S.: Differential forms on loop spaces and the cyclic bar complex. Topology 30, 339–371 (1991)

    Article  MathSciNet  Google Scholar 

  20. Gorokhovsky, A.: Characters of cycles, equivariant characteristic classes and Fredholm modules. Commun. Math. Phys. 208, 1–23 (1999)

    Article  MathSciNet  Google Scholar 

  21. Gorokhovsky, A.: Secondary characteristic classes and cyclic cohomology of Hopf algebras. Topology 41, 993–1016 (2002)

    Article  MathSciNet  Google Scholar 

  22. Guelorget, S.: Algèbre de Weil du groupe linéaire, Application aux classes caractéristiques d’un feuilletage. Springer Lecture Notes in Math., vol. 484, pp. 179–191. Springer, Berlin (1975)

    MATH  Google Scholar 

  23. Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer, Berlin (1999)

    Book  Google Scholar 

  24. Heitsch, J., Hurder, S.: Secondary classes, Weil measures and the geometry of foliations. J. Differ. Geom. 20, 291–309 (1984)

    Article  MathSciNet  Google Scholar 

  25. Hilsum, M., Skandalis, G.: Stabilité des \(C^{*}\)-algèbres de feuilletages. Ann. Inst. Fourier (Grenoble) 33, 201–208 (1983)

    Article  MathSciNet  Google Scholar 

  26. Hurder, S., Katok, A.: Secondary classes and transverse measure theory of a foliation. Bull. Am. Math. Soc. 11, 347–350 (1984)

    Article  MathSciNet  Google Scholar 

  27. Kamber, F.W., Tondeur, P.: Characteristic invariants of foliated bundles. Manuscr. Math. 11, 51–89 (1974)

    Article  MathSciNet  Google Scholar 

  28. Laurent-Gengoux, C., Tu, J.-L., Xu, P.: Chern–Weil map for principal bundles over groupoids. Math. Z. 255, 451–491 (2007)

    Article  MathSciNet  Google Scholar 

  29. MacDonald, L. E., Rennie, A.: The Godbillon–Vey invariant and equivariant KK-theory. Ann. K-Theory 2, 249–294 (2020)

  30. Morita, S.: Geometry of Differential Forms (Translations of Mathematical Monographs). American Mathematical Society, Providence (2001)

    Book  Google Scholar 

  31. Moscovici, H.: Geometric construction of Hopf cyclic characteristic classes. Adv. Math. 274, 651–680 (2015)

    Article  MathSciNet  Google Scholar 

  32. Moscovici, H., Rangipour, B.: Cyclic cohomology of hopf algebras of transverse symmetries in codimension 1. Adv. Math. 210, 323–374 (2007)

    Article  MathSciNet  Google Scholar 

  33. Segal, G.: Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34, 105–112 (1968)

    Article  MathSciNet  Google Scholar 

  34. Tradler, T., Wilson, S., Zeinalian, M.: Loop differential \(K\)-theory. Ann. Math. Blaise Pascal 22, 121–163 (2015)

    Article  MathSciNet  Google Scholar 

  35. Winkelnkemper, H.E.: The graph of a foliation. Ann. Glob. Anal. Geom. 1(3), 51–75 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I wish to thank the Australian Federal Government for a Research Training Program scholarship, which supported this research. I also thank Moulay Benameur for supporting a visit to Montpellier in late 2018, and Magnus Goffeng for supporting a visit to Gothenburg in early 2019, where parts of this research were conducted. I also thank Magnus Goffeng, James Stasheff and the anonymous referee for helpful comments on the paper. Finally, I would like to extend deep thanks to Adam Rennie, whose consistent (but never overbearing) guidance and support have greatly benefited my growth as a mathematician.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lachlan E. MacDonald.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacDonald, L.E. A characteristic map for the holonomy groupoid of a foliation. Math. Z. 300, 1093–1115 (2022). https://doi.org/10.1007/s00209-021-02832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02832-5

Navigation