Skip to main content
Log in

Rigid modules and Schur roots

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let C be a symmetrizable generalized Cartan matrix with symmetrizer D and orientation \(\Omega \). In Geiß et al. (Invent Math 209(1):61–158, 2017) we constructed for any field \(\mathbb {F}\) an \(\mathbb {F}\)-algebra \(H := H_\mathbb {F}(C,D,\Omega )\), defined in terms of a quiver with relations, such that the locally free H-modules behave in many aspects like representations of a hereditary algebra \({\widetilde{H}}\) of the corresponding type. We define a Noetherian algebra \({\widehat{H}}\) over a power series ring, which provides a direct link between the representation theory of H and of \({\widetilde{H}}\). We define and study a reduction and a localization functor relating the module categories of \({\widehat{H}}\), \({\widetilde{H}}\) and H. These are used to show that there are natural bijections between the sets of isoclasses of tilting modules over the three algebras \({\widehat{H}}\), \({\widetilde{H}}\) and H. We show that the indecomposable rigid locally free H-modules are parametrized, via their rank vectors, by the real Schur roots associated to \((C,\Omega )\). Moreover, the left finite bricks of H, in the sense of Asai, are parametrized, via their dimension vectors, by the real Schur roots associated to \((C^T,\Omega )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adachi, T., Iyama, O., Reiten, I.: \(\tau \)-tilting theory. Compos. Math. 150(3), 415–452 (2014)

    Article  MathSciNet  Google Scholar 

  2. Asai, S.: Semibricks, to appear in IMRN, arXiv:1610.05860v5 [math.RT]

  3. Auslander, M.: Functors and morphisms determined by objects. In: Representation Theory of Algebras. (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), Lecture Notes in Pure Appl. Math. 37. Marcel Dekker, New York (1978), 1–244. Also in: Selected Works of Maurice Auslander, Am. Math. Soc. (1999)

  4. Auslander, M.: On the dimension of modules and algebras. III. Global dimension. Nagoya Math. J. 9, 67–77 (1955)

    Article  MathSciNet  Google Scholar 

  5. Bongartz, K.: Tilted algebras. In: Representations of algebras (Puebla, 1980), pp. 26–38, Lecture Notes in Mathematics, 903, Springer, Berlin-New York, 1981

  6. Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15(1–2), 145–179 (1987)

    Article  MathSciNet  Google Scholar 

  7. Caldero, P., Keller, B.: From triangulated categories to cluster algebras II. Ann. Sci. École Norm. Supér. 4(39), 983–1009 (2006)

    Article  MathSciNet  Google Scholar 

  8. Colby, R. R., Fuller, K.R.: Equivalence and duality for module categories. With tilting and cotilting for rings. Cambridge Tracts in Mathematics, 161. Cambridge University Press, Cambridge, 2004. x+152 pp

  9. Crawley-Boevey, W.: Exceptional sequences of representations of quivers. In: Representations of algebras (Ottawa, ON, 1992), 117–124, CMS Conference Proceedings, 14, American Mathematical Society, Providence, RI, (1993)

  10. Crawley-Boevey, W.: Rigid integral representations of quivers. Representation theory of algebras (Cocoyoc, 1994), 155–163, CMS Conference Proceedings, 18, American Mathematical Society, Providence, RI, (1996)

  11. Curtis, C.W., Reiner, I.: Methods of representation theory. Vol. I. With applications to finite groups and orders. Reprint of the 1981 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York, (1990). xxiv+819 pp

  12. Demonet, L.: Private communication via Email (2018)

  13. Demonet, L., Iyama, O., Jasso, G.: \(\tau \)-tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN 3, 852–892 (2019)

    Article  MathSciNet  Google Scholar 

  14. Eisenbud, D.: Commutative Algebra with a view toward Algebraic Geometry. In: Springer Graduate Texts in Mathematics 150 Springer-Verlag, New York, (1995). xvi+785 pp

  15. Facchini, A.: Module theory. Endomorphism rings and direct sum decompositions in some classes of modules. [2012 reprint of the 1998 original]. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1998. xiv+285 pp

  16. Geiß, Ch., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable Cartan matrices I: Foundations. Invent. Math. 209(1), 61–158 (2017)

    Article  MathSciNet  Google Scholar 

  17. Geiß, Ch., Leclerc, B., Schröer, J.: Quivers with relations for symmetrizable Cartan matrices II: change of symmetrizers. Int. Math. Res. Not. IMRN 9, 2866–2898 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Hubery, A.: Acyclic Cluster Algebras via Ringel-Hall Algebras. Preprint (unpublished)

  19. Hubery, A.: The cluster complex of an hereditary artin algebra. Algebr. Represent Theory 14(6), 1163–1185 (2011)

    Article  MathSciNet  Google Scholar 

  20. Hubery, A., Krause, H.: A categorification of non-crossing partitions. J. Eur. Math. Soc. (JEMS) 18(10), 2273–2313 (2016)

    Article  MathSciNet  Google Scholar 

  21. Iyama, O., Reiten, I.: Introduction to \(\tau \)-tilting theory. Proc. Natl. Acad. Sci. USA 111(27), 9704–9711 (2014)

    Article  MathSciNet  Google Scholar 

  22. Ricke, C.: On tau-Tilting Theory and Perpendicular Categories. PhD Thesis, University of Bonn (2016)

  23. Ringel, C.M.: The braid group action on the set of exceptional sequences of a hereditary Artin algebra. In: Abelian group theory and related topics (Oberwolfach, 1993), 339–352, Contemporary Mathematics, 171, American Mathematical Society, Providence, RI, (1994)

  24. Rupel, D.: Quantum cluster characters for valued quivers. Trans. Am. Math. Soc. 367(10), 7061–7102 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first named author acknowledges partial support from CoNaCyT grant no. 239255, and he thanks the Max-Planck Institute for Mathematics in Bonn for one year of hospitality in 2017/18. The third author thanks the SFB/Transregio TR 45 for financial support. We thank Laurent Demonet, Lidia Angeleri Hügel and Henning Krause for helpful discussions and for providing useful references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schröer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiß, C., Leclerc, B. & Schröer, J. Rigid modules and Schur roots. Math. Z. 295, 1245–1277 (2020). https://doi.org/10.1007/s00209-019-02396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02396-5

Navigation