Skip to main content
Log in

Fock-Goncharov coordinates for rank two Lie groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let G be a simply connected, simple, complex Lie group of rank 2. We give explicit Fock-Goncharov coordinates for configurations of triples and quadruples of affine flags in G. We show that the action on triples by orientation preserving permutations corresponds to explicit quiver mutations, and that the same holds for the flip (changing the diagonal in a quadrilateral). This gives explicit coordinates on higher Teichmüller space, and also coordinates for boundary-unipotent representations of 3-manifold groups. As an application, we compute the (generic) boundary-unipotent representations in \({{\,\mathrm{Sp}\,}}(4,{\mathbb {C}})/\langle -I\rangle \) for the figure-eight knot complement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72(1), 128–166 (1997)

    Article  MathSciNet  Google Scholar 

  2. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bergeron, N., Falbel, E., Guilloux, A.: Tetrahedra of flags, volume and homology of SL(3). Geom. Topol. 18(4), 1911–1971 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbol. Comput. 24(3–4), 235–265 (1997). (Computational algebra and number theory (London, 1993))

    Article  MathSciNet  Google Scholar 

  5. Dimofte, T., Gabella, M., Goncharov, A.B.: K-decompositions and 3d gauge theories. J. High Energy Phys. 11, 151 (2016). front matter+144)

    Article  MathSciNet  Google Scholar 

  6. Falbel, E., Koseleff, P.-V., Rouillier, F.: Representations of fundamental groups of 3-manifolds into \(\text{ PGL }(3,{\mathbb{C}})\): exact computations in low complexity. Geom. Dedicata 177, 229–255 (2015)

    Article  MathSciNet  Google Scholar 

  7. Falbel, E., Garoufalidis, S., Guilloux, A., Goerner, M., Koseleff, P.-V., Rouillier, F., Zickert, C.K.: CURVE. Database of representations. http://curve.unhyperbolic.org/database.html (2018). Accessed 22 Apr 2019

  8. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006)

    Article  Google Scholar 

  9. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)

    Article  MathSciNet  Google Scholar 

  10. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12(2), 335–380 (1999)

    Article  MathSciNet  Google Scholar 

  11. Garoufalidis, S., Goerner, M., Zickert, C.K.: Gluing equations for \(\text{ PGL }(n,{\mathbb{C}})\)-representations of 3-manifolds. Algebr. Geom. Topol. 15(1), 565–622 (2015)

    Article  MathSciNet  Google Scholar 

  12. Garoufalidis, S., Goerner, M., Zickert, C.K.: The Ptolemy field of 3-manifold representations. Algebr. Geom. Topol. 15(1), 371–397 (2015)

    Article  MathSciNet  Google Scholar 

  13. Garoufalidis, S., Thurston, D.P., Zickert, C.K.: The complex volume of \(\text{ SL }(n,{\mathbb{C}})\)-representations of 3-manifolds. Duke Math. J. 164(11), 2099–2160 (2015)

    Article  MathSciNet  Google Scholar 

  14. Goerner, M., Zickert, C.K.: Triangulation independent Ptolemy varieties. Math. Z. 289(1–2), 663–693 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Keller, B.: Cluster algebras, quiver representations and triangulated categories. In: Triangulated categories, volume 375 of London Math. Soc. Lecture Note Ser., pp. 76–160. Cambridge Univ. Press, Cambridge, (2010)

  17. Keller, B.: Quiver mutation in java. https://webusers.imj-prg.fr/~bernhard.keller/quivermutation/ (2018). Accessed 22 Apr 2019

  18. Knapp, A.W.: Lie groups beyond an introduction, volume 140 of Progress in Mathematics, 2nd edn. Birkhäuser Boston Inc, Boston (2002)

    Google Scholar 

  19. Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math. 81, 973–1032 (1959)

    Article  MathSciNet  Google Scholar 

  20. Le, I.: Cluster structures on higher Teichmüller spaces for classical groups. arXiv:1603.03523 (2016)

  21. Lusztig, G.: Total positivity and canonical bases. In: Algebraic groups and Lie groups, volume 9 of Austral. Math. Soc. Lect. Ser., pp. 281–295. Cambridge Univ. Press, Cambridge (1997)

  22. Marsh, R.J.: Lecture notes on cluster algebras. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013)

  23. Penner, R.C.: The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. 113(2), 299–339 (1987)

    Article  MathSciNet  Google Scholar 

  24. Zickert, C.K.: The volume and Chern-Simons invariant of a representation. Duke Math. J. 150(3), 489–532 (2009)

    Article  MathSciNet  Google Scholar 

  25. Zickert, C.K.: Ptolemy coordinates, Dehn invariant and the A-polynomial. Math. Z. 283(1–2), 515–537 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Matthias Goerner, Stavros Garoufalidis, and Dylan Thurston for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Zickert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was supported in part by DMS-13-09088.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zickert, C.K. Fock-Goncharov coordinates for rank two Lie groups. Math. Z. 294, 251–286 (2020). https://doi.org/10.1007/s00209-019-02307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02307-8

Keywords

Mathematics Subject Classification

Navigation