Skip to main content
Log in

Triangulation independent Ptolemy varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Ptolemy variety for \({{\mathrm{SL}}}(2,{\mathbb {C}})\) is an invariant of a topological ideal triangulation of a compact 3-manifold M. It is closely related to Thurston’s gluing equation variety. The Ptolemy variety maps naturally to the set of conjugacy classes of boundary-unipotent \({{\mathrm{SL}}}(2,{\mathbb {C}})\)-representations, but (like the gluing equation variety) it depends on the triangulation, and may miss several components of representations. In this paper, we define a Ptolemy variety, which is independent of the choice of triangulation, and detects all boundary-unipotent irreducible \({{\mathrm{SL}}}(2,{\mathbb {C}})\)-representations. We also define variants of the Ptolemy variety for \({{\mathrm{PSL}}}(2,{\mathbb {C}})\)-representations, and representations that are not necessarily boundary-unipotent. In particular, we obtain an algorithm to compute all irreducible \({{\mathrm{SL}}}(2,{\mathbb {C}})\)-characters as well as the full A-polynomial. All the varieties are topological invariants of M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. As an example, m004(10,11) and m004(-10,-11) in SnapPy give the same geometric representation but different shapes corresponding to different decorations.

References

  1. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4):235–265 (1997) [Computational algebra and number theory (London, 1993)]

  2. Calegari, D.: Real places and torus bundles. Geom. Dedicata 118, 209–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Culler, M., Dunfield, N.M., Weeks, J.R.: SnapPy: a computer program for studying the geometry and topology of 3-manifolds. http://snappy.computop.org/

  4. Dimofte, T., Garoufalidis, S.: The quantum content of the gluing equations. Geom. Topol. 17(3), 1253–1315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Falbel, E., Koseleff, P.-V., Rouillier, F.: Representations of fundamental groups of 3-manifolds into PGL(3,\(\mathbb{C}\)): exact computations in low complexity. Geom. Dedicata 177, 229–255 (2015). https://doi.org/10.1007/s10711-014-9987-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Falbel, E., Garoufalidis, S., Guilloux, A., Goerner, M., Koseleff, P.-V., Rouillier, F., Zickert, C.K.: CURVE. Database of representations. http://curve.unhyperbolic.org/database.html

  7. Garoufalidis, S., Goerner, M., Zickert, C.K.: Gluing equations for \({\text{ PGL }}(\text{ n },{\mathbb{C}})\)-representations of 3-manifolds. Algebraic Geom. Topol. 15(1), 565–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garoufalidis, S., Goerner, M., Zickert, C.K.: The Ptolemy field of 3-manifold representations. Algebraic Geom. Topol. 15(1), 371–397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garoufalidis, S., Thurston, D.P., Zickert, C.K.: The complex volume of \(\text{ SL }(\text{ n },{\mathbb{C}})\)-representations of 3-manifolds. Duke Math. J. 164(11), 2099–2160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Segerman, H.: A generalisation of the deformation variety. Algebraic Geom. Topol. 12(4), 2179–2244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Thurston, W.P.: The Geometry and Topology of Three-Manifolds. Princeton Lecture Notes (1980). http://library.msri.org/books/gt3m/

  12. Zickert, C.K.: The volume and Chern–Simons invariant of a representation. Duke Math. J. 150(3), 489–532 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zickert, C.K.: Ptolemy coordinates, Dehn invariant and the \(A\)-polynomial. Math. Z. 283(1–2), 515–537 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Stavros Garoufalidis, Walter Neumann and Henry Segerman for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Zickert.

Additional information

Christian K. Zickert was supported by DMS-13-09088. Matthias Goerner was partially supported by DMS-11-07452.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerner, M., Zickert, C.K. Triangulation independent Ptolemy varieties. Math. Z. 289, 663–693 (2018). https://doi.org/10.1007/s00209-017-1970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1970-4

Keywords

Mathematics Subject Classification

Navigation