Skip to main content
Log in

Ramified automorphic induction and zero-dimensional affine Deligne–Lusztig varieties

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

To any connected reductive group G over a non-archimedean local field F and to any maximal torus T of G, we attach a family of extended affine Deligne–Lusztig varieties (and families of torsors over them) over the residue field of F. This construction generalizes affine Deligne–Lusztig varieties of Rapoport, which are attached only to unramified tori of G. Via this construction, we can attach to any maximal torus T of G and any character of T a representation of G. This procedure should conjecturally realize the automorphic induction from T to G. For \(G = {{\mathrm{GL}}}_2\) in the equal characteristic case, we prove that our construction indeed realizes the automorphic induction from at most tamely ramified tori. Moreover, if the torus is purely tamely ramified, then the varieties realizing this correspondence turn out to be (quite complicate) combinatorial objects: they are zero-dimensional and reduced, i.e., just disjoint unions of points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. The more canonical choice of all Frobenius lifts \(\varSigma ^{\prime } := \{ \sigma , \sigma \tau \}\) was suggested to the author by P. Scholze. At least in the cases we study in this article, this choice will lead to the same results as \(\varSigma \) from the text.

  2. A subtlety: we suppressed our choice of an identification of \(E^{\times }\) with the diagonal quotient of \(\tilde{I}_{m,w}\), for which we silently have chosen that u corresponds to \(y_1\). This choice determines on the one hand that \(y_1\) acts in \(V_{\chi }\) by \(\chi (u)\), and on the other hand, that we have to evaluate the trace formula using the identifications \(\varpi \leftrightarrow u \leftrightarrow y_1 = e_0(u,-u)\).

References

  1. Bushnell, C.J., Henniart, G.: The essentially tame local Langlands correspondence. I. J. Am. Math. Soc. 18(3), 685–710 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bushnell, C.J., Henniart, G.: The Local Langlands Correspondence for \(\text{ GL }_2\). Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  3. Bushnell, C.J., Kutzko, P.C.: The Admissible Dual of GL(N) Via Compact Open Subgroups volume 129 of Annals of Mathematics Studies. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  4. Borel, A.: Linear Algebraic Groups, 2nd edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  5. Boyarchenko, M.: Deligne–Lusztig constructions for unipotent and \(p\)-adic groups. preprint (2012). arXiv:1207.5876

  6. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972)

    Article  MATH  Google Scholar 

  7. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local II. Schémas en groupes: existence d’une donnée radicielle valuée. Inst. Hautes Études Sci. Publ. Math. 60, 197–376 (1984)

    Article  MATH  Google Scholar 

  8. Bruhat, F., Tits, J.: Groupes algébriques sur un corps local.Chapitre III. Compléments et applications à la cohomologiegaloisienne. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34(3), 671–698 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Boyarchenko, M., Weinstein, J.: Maximal varieties and the local Langlands correspondence for \({GL}(n)\). J. Am. Math. Soc. 29, 177–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, C.: Deligne–Lusztig constructions for division algebras and the local Langlands correspondence. Adv. Math. 294, 332–383 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math. 103(1), 103–161 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Görtz, U., He, X.: Basic loci in Shimura varieties of Coxeter type. Camb. J. Math. 3, 323–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harris, Michael, Taylor, Richard: On the Geometry and Cohomology of Some Simple Shimura Varieties volume 151 of Ann. of Math. Studies. Princeton University Press, Princeton (1999)

    Google Scholar 

  14. Hartl, U., Viehmann, E.: The Newton stratification on deformations of local G-shtuka. J. Reine und Angew. Math. 656, 87–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ivanov, A.: Cohomology of affine Deligne–Lusztig varieties for GL\({}_2\). J. Alg. 383, 42–62 (2013)

    Article  MATH  Google Scholar 

  16. Ivanov, A.: Affine Deligne–Lusztig varieties of higher level and the local Langlands correspondence for GL\({}_2\). Adv. Math. 299, 640–686 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Laumon, G., Rapoport, M., Stuhler, U.: D-elliptic sheaves and the Langlands correspondence. Invent. Math. 113, 217–338 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lusztig, G.: Some remarks on the supercuspidal representations of p-adic semisimple groups. In: Automorphic forms, representations and L-functions. In: Proceedings of Symposium on Pure Mathematics, 33 Part 1 (Corvallis, Ore., 1977), pp. 171–175 (1979)

  19. Mühlherr, B., Struyve, K., Van Maldeghem, H.: Descent of affine buildings I: large minimal angles. Trans. Am. Math. Soc. 366, 4345–4366 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pappas, G., Rapoport, M.: Twisted loop groups and their affine flag varieties. Adv. Math. 219, 118–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prasad, G.: Galois-fixed points in the Bruhat–Tits building of a reductive group. Bull. Soc. Math. France 129, 169–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reuman, D.: Determining whether certain affine Deligne–Lusztig sets are empty. Ph.D. thesis, Chicago, 2002. arXiv:math/0211434

  23. Rousseau, G.: Immeubles des groupes réductifs sur les corps locaux. Thése Université de Paris-Sud Orsay (1977)

  24. Stasinski, A.: Extended Deligne–Lusztig varieties for general and special linear groups. Adv. Math. 226(3), 2825–2853 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, J.-K.: Smooth models associated to concave functions in Bruhat–Tits theory. preprint (2002)

  26. Zhu, X.: Affine Grassmannians and the geometric Satake in mixed characteristic. preprint (2014). arXiv:1407.8519v3

Download references

Acknowledgements

The author is very grateful to Paul Hamacher, Christian Liedtke, Stephan Neupert, Peter Scholze and Eva Viehmann for helpful discussions concerning this work. He is especially grateful to Eva Viehmann for valuable comments concerning a preliminary version of this manuscript. The author was partially supported by European Research Council starting Grant 277889 ”Moduli spaces of local G-shtukas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.B. Ramified automorphic induction and zero-dimensional affine Deligne–Lusztig varieties. Math. Z. 288, 439–490 (2018). https://doi.org/10.1007/s00209-017-1896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1896-x

Keywords

Mathematics Subject Classification

Navigation