Skip to main content
Log in

Weak stability of Ricci expanders with positive curvature operator

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove the \(L^{\infty }\) stability of expanding gradient Ricci solitons with positive curvature operator and quadratic curvature decay at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamler, R.H., Zhang, Q.S.: Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature (2015). arXiv:1506.03154

  2. Bamler, R.H.: Stability of symmetric spaces of noncompact type under Ricci flow. Geom. Funct. Anal. 25(2), 342–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carron, G.: Inégalités de Hardy sur les variétés riemanniennes non-compactes. J. Math. Pures Appl. 76(10), 883–891 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C.-W., Deruelle, A.: Structure at infinity of expanding gradient Ricci soliton. Asian J. Math. 19(5), 933–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I, Volume 135 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, 2007. Geometric aspects (2007)

  6. Chow, B., Peng, L., Ni, L.: Hamilton’s Ricci flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2006)

  7. Colding, T.H., Minicozzi II, W.P.: On uniqueness of tangent cones for Einstein manifolds. Invent. Math. 196(3), 515–588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Da Prato, G., Lunardi, A.: On the Ornstein–Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal. 131(1), 94–114 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deruelle, A.: Asymptotic estimates and compactness of expanding gradient Ricci solitons. To appear in Annali della Scuola Normale Superiore di Pisa (2016)

  10. Deruelle, A.: Stability of non compact steady and expanding gradient Ricci solitons. Calc. Var. Partial Differ. Equ. 54(2), 2367–2405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deruelle, A.: Smoothing out positively curved metric cones by Ricci expanders. Geom. Funct. Anal. 26(1), 188–249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grigor’yan, A.: Heat kernel and analysis on manifolds, volume 47 of AMS. IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI. International Press, Boston (2009)

  13. Grigor’yan, A.: Gaussian upper bounds for the heat kernel on arbitrary manifolds. J. Differ. Geom. 45, 33–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guenther, C.M.: The fundamental solution on manifolds with time-dependent metrics. J. Geom. Anal. 12(3), 425–436 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutperle, M., Headrick, M., Minwalla, S., Schomerus, V.: Spacetime energy decreases under world-sheet RG flow. J. High Energy Phys. (1):07320 (2003)

  16. Haslhofer, R., Müller, R.: Dynamical stability and instability of Ricci-flat metrics. Math. Ann. 360(1–2), 547–553 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koch, H.: Partial differential equations with non-Euclidean geometries. Discrete Contin. Dyn. Syst. Ser. S 1(3), 481–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koch, H., Lamm, T.: Geometric flows with rough initial data. Asian J. Math. 16(2), 209–235 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kröncke, K.: Stability and instability of Ricci solitons. Calc. Var. Partial Differ. Equ. 53(1–2), 265–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, P., Schoen, R.: \(L^p\) and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153(3–4), 279–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saloff-Coste, L.: Aspects of Sobolev-type inequalities. London Mathematical Society Lecture Note Series, vol. 289. Cambridge University Press, Cambridge (2002)

  23. Schnürer, O.C., Schulze, F., Simon, M.: Stability of hyperbolic space under Ricci flow. Commun. Anal. Geom. 19(5), 1023–1047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schulze, F., Simon, M.: Expanding solitons with non-negative curvature operator coming out of cones. Math. Z. 275(1–2), 625–639 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sesum, N.: Linear and dynamical stability of Ricci-flat metrics. Duke Math. J. 133(1), 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shi, W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30(1), 223–301 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Q.S.: Some gradient estimates for the heat equation on domains and for an equation by Perelman. Int. Math. Res. Not., pages Art. ID 92314, 39 (2006)

  28. Zhang, Z.-H.: On the completeness of gradient Ricci solitons. Proc. Am. Math. Soc. 137(8), 2755–2759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research leading to the results contained in this paper has received funding from the European Research Council (E.R.C.) under European Union’s Seventh Framework Program (FP7/2007-2013)/ ERC Grant Agreement No. 291060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alix Deruelle.

Appendix: Soliton equations

Appendix: Soliton equations

The next lemma gathers well-known Ricci soliton identities together with the (static) evolution equations satisfied by the curvature tensor.

Recall first that an expanding gradient Ricci soliton is said normalized if \(\int _Me^{-f}d\mu _g=(4\pi )^{n/2}\) (whenever it makes sense).

Lemma 6.5

Let \((M^n,g,\nabla ^g f)\) be a normalized expanding gradient Ricci soliton. Then the trace and first order soliton identities are:

$$\begin{aligned}&\Delta _g f = \mathop {\mathrm{R}}\nolimits _g+\frac{n}{2}, \end{aligned}$$
(24)
$$\begin{aligned}&\nabla ^g \mathop {\mathrm{R}}\nolimits _g+ 2\mathop {\mathrm{Ric}}\nolimits (g)(\nabla ^g f)=0, \end{aligned}$$
(25)
$$\begin{aligned}&|\nabla ^g f |^2+\mathop {\mathrm{R}}\nolimits _g=f+\mu (g), \end{aligned}$$
(26)
$$\begin{aligned}&\mathop {\mathrm{div}}\nolimits _g\mathop {\mathrm{Rm}}\nolimits (g)(Y,Z,T)=\mathop {\mathrm{Rm}}\nolimits (g)(Y,Z, \nabla f,T), \end{aligned}$$
(27)

for any vector fields Y, Z, T and where \(\mu (g)\) is a constant called the entropy.

The evolution equations for the curvature operator, the Ricci tensor and the scalar curvature are:

$$\begin{aligned}&\Delta _f \mathop {\mathrm{Rm}}\nolimits (g)+\mathop {\mathrm{Rm}}\nolimits (g)+\mathop {\mathrm{Rm}}\nolimits (g)*\mathop {\mathrm{Rm}}\nolimits (g)=0, \end{aligned}$$
(28)
$$\begin{aligned}&\quad \Delta _f\mathop {\mathrm{Ric}}\nolimits (g)+\mathop {\mathrm{Ric}}\nolimits (g)+2\mathop {\mathrm{Rm}}\nolimits (g)*\mathop {\mathrm{Ric}}\nolimits (g)=0, \end{aligned}$$
(29)
$$\begin{aligned}&\quad \Delta _f\mathop {\mathrm{R}}\nolimits _g+\mathop {\mathrm{R}}\nolimits _g+2|\mathop {\mathrm{Ric}}\nolimits (g)|^2=0, \end{aligned}$$
(30)

where, if A and B are two tensors, \(A*B\) denotes any linear combination of contractions of the tensorial product of A and B.

Proof

See [Chap.1, [5]] for instance. \(\square \)

Proposition 6.6

Let \((M^n,g,\nabla ^g f)\) be an expanding gradient Ricci soliton.

  • If \((M^n,g,\nabla ^g f)\) is non Einstein, if \(v:=f+\mu (g)+n/2\),

    $$\begin{aligned} \Delta _fv=v,\quad v>|\nabla v|^2. \end{aligned}$$
    (31)
  • Assume \(\mathop {\mathrm{Ric}}\nolimits (g)\ge 0\) and assume \((M^n,g,\nabla ^g f)\) is normalized. Then \(M^n\) is diffeomorphic to \({\mathbb {R}}^n\) and

    $$\begin{aligned}&v\ge \frac{n}{2}>0. \end{aligned}$$
    (32)
    $$\begin{aligned}&\quad \frac{1}{4}r_p(x)^2+\min _{M}v\le v(x)\le \left( \frac{1}{2}r_p(x)+\sqrt{\min _{M}v}\right) ^2,\quad \forall x\in M, \end{aligned}$$
    (33)
    $$\begin{aligned}&\quad \mathop {\mathrm{AVR}}\nolimits (g):=\lim _{r\rightarrow +\infty }\frac{\mathop {\mathrm{Vol}}\nolimits B(q,r)}{r^n}>0,\quad \forall q\in M, \end{aligned}$$
    (34)
    $$\begin{aligned}&\quad -C(n,V_0,A_0)\le \min _{M}f\le 0;\quad \mu (g)\ge \max _{M}\mathop {\mathrm{R}}\nolimits _g\ge 0, \end{aligned}$$
    (35)

where \(V_0\) is a positive number such that \(\mathop {\mathrm{AVR}}\nolimits (g)\ge V_0\), \(A_0\) is such that \(\sup _{M}\mathop {\mathrm{R}}\nolimits _g\le A_0\) and \(p\in M\) is the unique critical point of v.

  • Assume \(\mathop {\mathrm{Ric}}\nolimits (g)=\textit{O}(r_p^{-2})\) where \(r_p\) denotes the distance function to a fixed point \(p\in M\). Then the potential function is equivalent to \(r_p^2/4\) (up to order 2).

For a proof, see [9] and the references therein.

Lemma 6.7

(Distance distortions) Let \((M^n,g_0(t))_{t\ge 0}\) be a Type III solution of the Ricci flow with nonnegative Ricci curvature, i.e.

$$\begin{aligned} |\mathop {\mathrm{Rm}}\nolimits (g_0(t))|_{g_0(t)}\le \frac{A_0}{1+t},\quad \mathop {\mathrm{Ric}}\nolimits (g_0(t))\ge 0,\quad t\ge 0. \end{aligned}$$

Then,

$$\begin{aligned} \left( \frac{1+s}{1+t}\right) ^{c(A_0)}g_0(s)\le & {} g_0(t)\le g_0(s),\\ d_{g_0(s)}(x,y)-c(A_0)\left( \sqrt{t}-\sqrt{s}\right) \le d_{g_0(t)}(x,y)\le & {} d_{g_0(s)}(x,y),\quad s\le t,\quad x,y\in M, \end{aligned}$$

for a positive constant \(c(A_0)\), and any \(0\le s\le t\).

In particular,

$$\begin{aligned} -\frac{c(A_0)}{\sqrt{t}}\le \partial _td_{g_0(t)}(x,y)\le 0, \quad t>0,\quad x,y \in M, \end{aligned}$$

for a positive constant \(c(A_0)\).

Proof

The upper bound comes from the fact that the Ricci curvature is nonnegative, hence, \(g_0(t)\le g_0(s)\) for any \(s\le t\) in the sense of symmetric 2-tensors.

The lower bound has been proved by Hamilton and a proof can be found for instance in [lemma 8.33, [6]]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deruelle, A., Lamm, T. Weak stability of Ricci expanders with positive curvature operator. Math. Z. 286, 951–985 (2017). https://doi.org/10.1007/s00209-016-1791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1791-x

Keywords

Navigation