Skip to main content
Log in

Abstract

We consider the volume-normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton \((M,g)\) is a local maximum of Perelman’s shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges towards a Ricci soliton. If \(g\) is not a local maximum of the shrinker entropy, we show that there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci-flat and in the Einstein case (Haslhofer and Müller, arXiv:1301.3219, 2013; Kröncke, arXiv:1312.2224, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ache, A.G.: On the uniqueness of asymptotic limits of the Ricci flow. arXiv:1211.3387 (2012) (preprint )

  2. Besse, A.L.: Einstein Manifolds (reprint of the 1987 edition). Springer, Berlin (2008)

  3. Brendle, S.: Ricci flow and the sphere theorem. In: Graduate Studies in Mathematics, vol 111. American Mathematical Society (AMS), Providence, vii, p. 176 (2010)

  4. Cao, H.-D.: Existence of gradient Kähler–Ricci solitons. In: Elliptic and Parabolic Methods in Geometry (Minneapolis, MN), pp. 1–16 (1994)

  5. Cao, H.-D.: Advanced Lectures in Mathematics (ALM), pp. 1–38. Recent progress on Ricci solitons. Recent advances in geometric analysis, 11th edn. International Press, Somerville (2010)

    Google Scholar 

  6. Cao, H.-S., Hamilton, R., Ilmanen, T.: Gaussian densities and stability for some Ricci solitons. math/0404165 (2004) (preprint)

  7. Cao, H.-D., He, C.: Linear stability of Perelmans \(\nu \)-entropy on symmetric spaces of compact type. arXiv:1304.2697 (2013) (preprint)

  8. Cao, H.-D., Zhu, M.: On second variation of Perelman’s Ricci shrinker entropy. Math. Ann. 353(3), 747–763 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chave, T., Galliano, V.: On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties. Nucl. Phys. B 478(3), 758–778 (1996)

    Article  MATH  Google Scholar 

  10. Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part I: Geometric aspects. In: Mathematical Surveys and Monographs, vol 135. American Mathematical Society (AMS), Providence, xxiii, p. 536 (2007)

  11. Colding, T.H., Minicozzi, W.P.: On uniqueness of tangent cones for Einstein manifolds. Invent. Math., 1–74 (2013)

  12. Dai, X., Wang, X., Wei, G.: On the stability of Riemannian manifold with parallel spinors. Invent. Math. 161(1), 151–176 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dai, X., Wang, X., Wei, G.: On the variational stability of Kähler–Einstein metrics. Commun. Anal. Geom. 15(4), 669–693 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dancer, A.S., Wang, M.Y.: On Ricci solitons of cohomogeneity one. Ann. Glob. Anal. Geom. 39(3), 259–292 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ebin, D.G.: The manifold of Riemannian metrics. In: Proceedings of the Symposium AMS Bd., vol 15, pp. 11–40 (1970)

  16. Eminenti, M., La Nave, G., Mantegazza, C.: Ricci solitons: the equation point of view. Manuscr. Math. 127(3), 345–367 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friedan, D.: Nonlinear models in 2 + \(\epsilon \) dimensions. Phys. Rev. Lett. 45(13), 1057 (1980)

  18. Futaki, A., Sano, Y.: Lower diameter bounds for compact shrinking Ricci solitons. Asian J. Math. 17(1), 17–32 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guenther, C., Isenberg, J., Knopf, D.: Stability of the Ricci flow at Ricci-flat metrics. Commun. Anal. Geom. 10(4), 741–777 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  21. Hamilton, R.S.: The Ricci flow on surfaces. Contemp. Math. 71(1) (1988)

  22. Hamilton, R.S.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)

    Article  Google Scholar 

  23. Haslhofer, R.: Perelman’s lambda-functional and the stability of Ricci-flat metrics. Calc. Var. Partial Differ. Equ. 45(3–4), 481–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hall, S., Haslhofer, R., Murphy, T.: The stability inequality for Ricci-flat cones. J. Geom. Anal. 24(1), 472–494 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hall, S., Murphy, T.: On the linear stability of Kähler–Ricci solitons. Proc. Am. Math. Soc. 139(9), 3327–3337 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Haslhofer, R., Müller, R.: Dynamical stability and instability of Ricci-flat metrics. arXiv:1301.3219 (2013) (preprint)

  27. Itoh, M., Nakagawa, T.: Variational stability and local rigidity of Einstein metrics. Yokohama Math. J. 51(2), 103–115 (2005)

    MATH  MathSciNet  Google Scholar 

  28. Ivey, T.: Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3(4), 301–307 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kholodenko, A.L.: Towards physically motivated proofs of the Poincaré and geometrization conjectures. J. Geom. Phys. 58(2), 259–290 (2008)

  30. Koiso, N.: Non-deformability of Einstein metrics. Osaka J. Math. 15, 419–433 (1978)

    MATH  MathSciNet  Google Scholar 

  31. Koiso, N.: Rigidity and stability of Einstein metrics—the case of compact symmetric spaces. Osaka J. Math. 17, 51–73 (1980)

    MATH  MathSciNet  Google Scholar 

  32. Koiso, N.: Rigidity and infinitesimal deformability of Einstein metrics. Osaka J. Math. 19, 643–668 (1982)

    MATH  MathSciNet  Google Scholar 

  33. Koiso, N.: Einstein metrics and complex structures. Invent. Math. 73, 71–106 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Koiso, N.: On rotationally symmmetric Hamilton’s equation for Kähler–Einstein metrics. In: Recent Topics in Differential and Analytic Geometry, Advanced Studies in Pure Mathematics, vol 18-I, pp. 327–337. Academic Press, Boston (1990)

  35. Kröncke, K.: On the stability of Einstein manifolds. arXiv:1311.6749 (2013) (preprint)

  36. Kröncke, K.: Einstein metrics, Ricci flow and the Yamabe invariant. arXiv:1312.2224 (2013) (preprint)

  37. Kröncke, K.: Stability of Einstein Manifolds. PhD thesis, Universität Potsdam (2013)

  38. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. math/0211159 (2002) (preprint)

  39. Podestà, F., Spiro, A.: Kähler–Ricci solitons on homogeneous toric bundles. J. Reine Angew. Math. 642, 109–127 (2010)

  40. Podestà, F., Spiro, A.: On moduli spaces of Ricci solitons. J. Geom. Anal., 1–18 (2013)

  41. Sesum, N.: Linear and dynamical stability of Ricci-flat metrics. Duke Math. J. 133(1), 1–26 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sun, S., Wang, Y.: On the Kähler–Ricci flow near a Kähler–Einstein metric. J. Reine Angew. Math (2013)

  43. Wang, X.-J., Zhu, X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ye, R.: Ricci flow, Einstein metrics and space forms. Trans. Am. Math. Soc. 338(2), 871–896 (1993)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Christian Bär, Stuart Hall and Thomas Murphy for their support and helpful discussions. Moreover, the author thanks Sonderforschungsbereich 647 funded by Deutsche Forschungsgemeinschaft for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kröncke.

Additional information

Communicated by M. Struwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kröncke, K. Stability and instability of Ricci solitons. Calc. Var. 53, 265–287 (2015). https://doi.org/10.1007/s00526-014-0748-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0748-3

Mathematics Subject Classification

Navigation