Skip to main content
Log in

Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We investigate in this paper the existence of a metric which maximizes the first eigenvalue of the Laplacian on Riemannian surfaces. We first prove that, in a given conformal class, there always exists such a maximizing metric which is smooth except at a finite set of conical singularities. This result is similar to the beautiful result concerning Steklov eigenvalues recently obtained by Fraser and Schoen (Sharp eigenvalue bounds and minimal surfaces in the ball, 2013). Then we get existence results among all metrics on surfaces of a given genus, leading to the existence of minimal isometric immersions of smooth compact Riemannian manifold (M, g) of dimension 2 into some k-sphere by first eigenfunctions. At last, we also answer a conjecture of Friedlander and Nadirashvili (Int Math Res Not 17:939–952, 1999) which asserts that the supremum of the first eigenvalue of the Laplacian on a conformal class can be taken as close as we want of its value on the sphere on any orientable surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Berger, P. Gauduchon, and E. Mazet. Le spectre d’une variété riemannienne. Lecture Notes in Mathematics, Vol. 194. Springer, Berlin (1971)

  2. S. Brendle. Minimal surfaces in S 3: a survey of recent results (2013)

  3. Brooks R., Makover E.: Riemann surfaces with large first eigenvalue. J. Anal. Math., 83, 243–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bryant R.L.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Differ. Geom., 17(3), 455–473 (1982)

    MATH  Google Scholar 

  5. P. Buser, M. Burger, and J. Dodziuk. Riemann surfaces of large genus and large λ 1. In Geometry and Analysis on Manifolds (Katata/Kyoto, 1987). Lecture Notes in Mathematics, Vol. 1339. Springer, Berlin (1988), pp. 54–63

  6. Cheng S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv., 51(1), 43–55 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cherrier P.: Une inégalité de Sobolev sur les variétés riemanniennes. Bull. Sci. Math. (2), 103(4), 353–374 (1979)

    MATH  MathSciNet  Google Scholar 

  8. J. Choe. Minimal surfaces in \({\mathbb{S}^3}\) and Yau’s conjecture. In: Proceedings of the Tenth International Workshop on Differential Geometry, Taegu, 2006. Kyungpook National University (2006), pp. 183–188

  9. Colbois B., El Soufi A.: Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Glob. Anal. Geom., 24(4), 337–349 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. I. Interscience Publishers, Inc., New York (1953)

  11. W. Ding, J. Jost, J. Li, and G. Wang. The differential equation Δu = 8π − 8πhe u on a compact Riemann surface. Asian J. Math., (2)1 (1997), 230–248

  12. Druet O.: Optimal Sobolev inequalities and extremal functions. The three-dimensional case. Indiana Univ. Math. J., 51(1), 69–88 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. El Soufi A., Giacomini H., Jazar M.: A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J., 135(1), 181–202 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. El Soufi A., Ilias S.: Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pac. J. Math., 195(1), 91–99 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Fraser and R. Schoen. Minimal surfaces and eigenvalue problems (2013)

  16. A. Fraser and R. Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball (2013)

  17. Friedlander L., Nadirashvili N.: A differential invariant related to the first eigenvalue of the Laplacian. Int. Math. Res. Not., 17, 939–952 (1999)

    Article  MathSciNet  Google Scholar 

  18. D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  19. Girouard A.: Fundamental tone, concentration of density, and conformal degeneration on surfaces. Can. J. Math., 61(3), 548–565 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Hélein. Harmonic Maps, Conservation Laws and Moving Frames. Cambridge Tracts in Mathematics, 2nd edn, Vol. 150. Cambridge University Press, Cambridge (2002). Translated from the 1996 French original, With a foreword by James Eells

  21. A. Henrot and M. Pierre. Variation et optimisation de formes. Mathématiques & Applications (Berlin) [Mathematics and Applications], Vol. 48. Springer, Berlin (2005). Une analyse géométrique. [A geometric analysis]

  22. D. Henry. Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations. London Mathematical Society Lecture Note Series, Vol. 318. Cambridge University Press, Cambridge (2005). With editorial assistance from Jack Hale and Antônio Luiz Pereira

  23. J. Hersch. Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B, 270 (1970), A1645–A1648

  24. C. Hummel. Gromov’s Compactness Theorem for Pseudo-Holomorphic Curves. Progress in Mathematics, Vol. 151. Birkhäuser Verlag, Basel (1997)

  25. D. Jakobson, M. Levitin, N. Nadirashvili, N. Nigam, and I. Polterovich. How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not., 63 (2005), 3967–3985

  26. D. Jakobson, N. Nadirashvili, and I. Polterovich. Extremal metric for the first eigenvalue on a Klein bottle. Can. J. Math., (2)58 (2006), 381–400

  27. M.A. Karpukhin. Maximization of the first nontrivial eigenvalue on the surface of genus two (2013)

  28. Kokarev G.: On the concentration-compactness phenomenon for the first Schrodinger eigenvalue. Calc. Var. Partial Differ. Equ., 38(1–2), 29–43 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Kokarev. Variational aspects of laplace eigenvalues on Riemannian surfaces (2011)

  30. H.B. Lawson, Jr. Complete minimal surfaces in S 3. Ann. Math. (2), 92 (1970), 335–374

  31. M. Ledoux. The geometry of Markov diffusion generators. Probability theory. Ann. Fac. Sci. Toulouse Math. (6), (2)9 (2000), 305–366

  32. P. Li and S.T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math., (2)69 (1982), 269–291

  33. V. Maz’ya. Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], augmented edition, Vol. 342. Springer, Heidelberg (2011)

  34. Montiel S., Ros A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math., 83(1), 153–166 (1985)

    Article  MathSciNet  Google Scholar 

  35. J. Moser. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 20 (1970/1971), 1077–1092

  36. Mumford D.: A remark on Mahler’s compactness theorem. Proc. Am. Math. Soc., 28, 289–294 (1971)

    MATH  MathSciNet  Google Scholar 

  37. Nadirashvili N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal., 6(5), 877–897 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Nadirashvili and Y. Sire. Conformal spectrum and harmonic maps (2010)

  39. Parker T.H.: Bubble tree convergence for harmonic maps. J. Differ. Geom., 44(3), 595–633 (1996)

    MATH  Google Scholar 

  40. J. Sacks and K. Uhlenbeck. The existence of minimal immersions of 2-spheres. Ann. Math. (2), (1)113 (1981), 1–24

  41. S. Salamon. Harmonic and holomorphic maps. In: Geometry Seminar “Luigi Bianchi” II—1984. Lecture Notes in Mathematics, Vol. 1164. Springer, Berlin (1985), pp. 161–224

  42. R. Schoen and S.-T. Yau. Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge (1994). Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, Translated from the Chineseby Ding and S. Y. Cheng, Preface translated from the Chinese by Kaising Tso

  43. T. Takahashi. Minimal immersions of Riemannian manifolds. J. Math. Soc. Jpn, 18 (1966)

  44. B.O. Turesson. Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, Vol. 1736. Springer, Berlin (2000)

  45. P.C. Yang and S.T. Yau. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), (1)7 (1980), 55–63

  46. S.T. Yau. Problem section. In: Seminar on Differential Geometry. Annals of Mathematics Studies, Vol. 102. Princeton University Press, Princeton (1982), pp. 669–706

  47. Zhu M.: Harmonic maps from degenerating Riemann surfaces. Math. Z., 264(1), 63–85 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. W.P. Ziemer. Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, Vol. 120. Springer, New York (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Petrides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrides, R. Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geom. Funct. Anal. 24, 1336–1376 (2014). https://doi.org/10.1007/s00039-014-0292-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0292-5

Keywords

Navigation