Skip to main content
Log in

Spectra of Schreier graphs of Grigorchuk’s group and Schroedinger operators with aperiodic order

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We study spectral properties of the Laplacians on Schreier graphs arising from Grigorchuk’s group acting on the boundary of the infinite binary tree. We establish a connection between the action of G on its space of Schreier graphs and a subshift associated to a non-primitive substitution and relate the Laplacians on the Schreier graphs to discrete Schroedinger operators with aperiodic order. We use this relation to prove that the spectrum of the anisotropic Laplacians is a Cantor set of Lebesgue measure zero. We also use it to show absence of eigenvalues both almost-surely and for certain specific graphs. The methods developed here apply to a large class of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In spite of the first author’s reluctance.

References

  1. Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generalization, Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Baake, M., Grimm, U.: Aperiodic Order: Volume 1, A Mathematical Invitation, Encyclopedia of Mathematics and its Applications, vol. 149. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  3. Baake, M., Moody, R. (eds.): Directions in Mathematical Quasicrystals. CRM Monograph Series, vol. 13. American Mathematical Society, Providence (2000)

    Google Scholar 

  4. Bartholdi, L., Grigorchuk, R. I.: On the spectrum of Hecke type operators related to some fractal groups. Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 5–45; translation in Proc. Steklov Inst. Math., 231, 4 , pp. 1–41 (2000)

  5. Beckus, S., Pogorzelski, F.: Spectrum of Lebesgue measure zero for Jacobi matrices of quasicrystals. Math. Phys. Anal. Geom. 16, 289–308 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bondarenko, I., D’Angeli, D., Nagnibeda, T.: Ends of Schreier Graphs and Cut-Points of Limit Spaces of Self-Similar Groups. Arxiv

  7. Damanik, D.: Gordon-type arguments in the spectral theory of one-dimensional quasicrystals, in [3], pp. 277–305

  8. Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schroedinger operators arising in the study of quasicrystals, in: [30]

  9. Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues. Commun. Math. Phys. 207, 687–696 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Damanik, D., Lenz, D.: The index of Sturmian sequences. Eur. J. Combin. 23, 23–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damanik, D., Lenz, D.: Powers in Sturmian sequences. Eur. J. Combin. 24, 377–390 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Damanik, D., Lenz, D.: Substitution dynamical systems: characterization of linear repetitivity and applications. J. Math. Anal. Appl. 321, 766–780 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Damanik, D., Zare, D.: Palindrome complexity bounds for primitive substitution sequences. Discret. Math. 222, 259–267 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Angeli, D., Donno, A., Nagnibeda, T.: Counting dimer coverings of self-similar Schreier graphs. Eur. J. Combin. 33, 1484–1513 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Angeli, D., Donno, A., Matter, M., Nagnibeda, T.: Schreier graphs of the Basilica group. J. Mod. Dyn. 4, 167–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dekking, F.M.: The spectrum of dynamical systems arising from substitutions of constant length. Z. Wahrscheinlichkeitstheorie Verw Gebiete 41, 221–239 (1977/78)

  17. Durand, F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Theory Dyn. Syst. 20, 1061–1078 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Durand, F.: Private communication (2015)

  19. Durand, F., Host, B., Skau, C.: Substitution dynamical systems, Bratteli diagrams and dimension groups. Ergod. Theory Dyn. Syst. 19, 953–993 (1999)

    Article  MATH  Google Scholar 

  20. Gordon, A.: The point spectrum of the one-dimensional Schrödinger operator (Russian). Uspekhi Mat. Nauk 31, 257–258 (1976)

    MathSciNet  Google Scholar 

  21. Grigorchuk, R.I.: On Burnside’s problem on periodic groups (Russian). Funkt. Anal. Prilozhen. 14, 53–54 (1980)

    MATH  Google Scholar 

  22. Grigorchuk, R.I.: Degrees of growth of finitely generated groups and the theory of invariant means (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 48, 939–985 (1984)

    MathSciNet  Google Scholar 

  23. Grigorchuk, R.I., Lenz, D., Nagnibeda, T.: Schreier graphs of Grigorchuk’s group and a subshift associated to a non-primitive. Substitution, to appear. In: Ceccherini-Silberstein, T., Salvatori, M., Sava-Huss, E. (eds.) Groups, Graphs, and Random Walks. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  24. Grigorchuk, R.I., Nekrashevych, V.: Self-similar groups, operator algebras and Schur complements. J. Mod. Dyn. 1, 323–370 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Grigorchuk, R.I., Nekrashevich, V., Sushanskii, V.: Automata, dynamical systems and infinite groups. Proc. Steklov Inst. Math. 231, 134–214 (2000)

    Google Scholar 

  26. Grigorchuk, R.I., Sunic, Z.: Asymptotic aspects of Schreier graphs and Hanoi Towers groups. Comptes Rendus Math. Acad. 342, 545–550 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grigorchuk, R.I., Sunic, Z.: Schreier spectrum of the Hanoi towers group on three pegs. Proc. Symp. Pure Math. 77, 183–198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grigorchuk, R.I., Zuk, A.: On the asymptotic spectrum of random walks on infinite families of graphs. Random walks and discrete potential theory (Cortona, 1997), 188–204, Symp. Math. XXXIX, Cambridge University Press, Cambridge (1999)

  29. Grigorchuk, R.I., Zuk, A.: The lamplighter group as a group generated by a 2-state automaton, and its spectrum. Geom. Dedic. 87, 209–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kellendonk, J., Lenz, D., Savinien, J. (eds.): Directions in Aperiodic Order. Progress in Mathematics 309. Birkhäuser, Basel (2015)

    Google Scholar 

  31. Lagarians, J., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergod. Theory Dyn. Syst. 23, 831–867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lenz, D.: Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Commun. Math. Phys. 227, 119–130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lenz, D.: Uniform ergodic theorems on subshifts over a finite alphabet. Ergod. Theory Dyn. Syst. 22, 245–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  35. Lysenok, I.G.: A set of defining relations for the Grigorchuk group (Russian). Mat. Zametki 38, 503–516 (1985). (English translation. In: Math. Notes 38(1985), 784–792 (1985))

    MathSciNet  MATH  Google Scholar 

  36. Matte Bon, N.: Topological Full Groups of Minimal Subshifts with Subgroups of Intermediate Growth. arXiv:1408.0762 (2014) (Preprint)

  37. Moody, R.V. (ed.): The Mathematics of Long-Range Aperiodic Order NATO-ASI Series C 489. Kluwer, Dordrecht (1997)

    Google Scholar 

  38. Nekrashevych, V.: Self-Similar Groups, Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence (2005)

    Google Scholar 

  39. Nekrashevych, V.: Periodic groups from minimal actions of the infinite dihedral group. arXiv:1601.01033

  40. Solomyak, B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discret. Comput. Geom. 20, 265–279 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sunic, Z.: Hausdorff dimension in a family of self-similar groups. Geom. Dedic. 124, 213–236 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Vorobets, Y.: On a Substitution Subshift Related to the Grigorchuk Group. ArXiv:0910.4800 (2009) (preprint)

  43. Vorobets, Y.: Notes on the Schreier graphs of the Grigorchuk group Dynamical systems and group actions. Contemp. Math. Am. Math. Soc. Provid. 567, 221–248 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

R.G. was partially supported by the NSF Grant DMS-1207669 and by ERC AG COMPASP. The authors acknowledge support of the Swiss National Science Foundation. Part of this research was carried out while D.L. and R.G. were visiting the Department of mathematics of the University of Geneva. The hospitality of the department is gratefully acknowledged. The authors also thank Yaroslav Vorobets for allowing them to use his figures 3 and 4. Finally, the authors would like to thank the anonymous referee for a careful reading of the manuscript resulting in various helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lenz.

Additional information

Communicated by Thomas Schick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorchuk, R., Lenz, D. & Nagnibeda, T. Spectra of Schreier graphs of Grigorchuk’s group and Schroedinger operators with aperiodic order. Math. Ann. 370, 1607–1637 (2018). https://doi.org/10.1007/s00208-017-1573-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1573-8

Navigation