Skip to main content

Advertisement

Log in

Congested Aggregation via Newtonian Interaction

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive–attractive nonlocal interaction models, where the repulsive effects instead arise from an interaction kernel or the addition of diffusion. We formulate our model as the Wasserstein gradient flow of an interaction energy, with a penalization to enforce the constraint on the height of the density. From this perspective, the problem can be seen as a singular limit of the Keller–Segel equation with degenerate diffusion. Two key properties distinguish our problem from previous work on height constrained equations: nonconvexity of the interaction kernel (which places the model outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity field on the density (which causes the problem to lack a comparison principle). To overcome these obstacles, we combine recent results on gradient flows of nonconvex energies with viscosity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem and, using this characterization, show that in two dimensions patch solutions converge to a characteristic function of a disk in the long-time limit, with an explicit rate on the decay of the energy. We believe that a key contribution of the present work is our blended approach, combining energy methods with viscosity solution theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, D.; Kim, I.; Yao, Y.: Quasi-static evolution and congested crowd transport. Nonlinearity 27(4), 823–858 (2014). doi:10.1088/0951-7715/27/4/823

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L.; Gigli, N.; Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd edn. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  3. Ambrosio, L.; Serfaty, S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008). doi:10.1002/cpa.20223

    Article  MathSciNet  MATH  Google Scholar 

  4. Balagué, D.; Carrillo, J.; Laurent, T.; Raoul, G.: Nonlocal interactions by repulsive-attractive potentials: radial ins/stability. Phys. D. 260, 5–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balagué, D.; Carrillo, J.A.; Yao, Y.: Confinement for repulsive-attractive kernels. Discrete Contin. Dyn. Syst. Ser. B 19(5), 1227–1248 (2014). doi:10.3934/dcdsb.2014.19.1227

    Article  MathSciNet  MATH  Google Scholar 

  6. Benedetto, D.; Caglioti, E.; Carrillo, J.A.; Pulvirenti, M.: A non-Maxwellian steady distribution for one-dimensional granular media. J. Stat. Phys. 91(5–6), 979–990 (1998). doi:10.1023/A:1023032000560

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertozzi, A.L.; Carrillo, J.A.; Laurent, T.: Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3), 683–710 (2009). doi:10.1088/0951-7715/22/3/009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bertozzi, A.L.; Kolokolnikov, T.; Sun, H.; Uminsky, D.; von Brecht, J.: Ring patterns and their bifurcations in a nonlocal model of biological swarms. Commun. Math. Sci. 13(4), 955–985 (2015). doi:10.4310/CMS.2015.v13.n4.a6

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertozzi, A.L., Laurent, T., Léger, F.: Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22(suppl. 1), 1140,005, 39, 2012. doi:10.1142/S0218202511400057

  10. Blanchet, A.: A gradient flow approach to the Keller–Segel systems. to appear in RIMS Kokyuroku's lecture notes, preprint at http://publications.ut-capitole.fr/16518/

  11. Blanchet, A.; Carlen, E.A.; Carrillo, J.A.: Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. J. Funct. Anal. 262(5), 2142–2230 (2012). doi:10.1016/j.jfa.2011.12.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Burchard, A.; Chambers, G.R.: Geometric stability of the Coulomb energy. Calc. Var. Partial Differ. Equ. 54(3), 3241–3250 (2015). doi:10.1007/s00526-015-0900-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Burger, M.; Fetecau, R.; Huang, Y.: Stationary states and asymptotic behavior of aggregation models with nonlinear local repulsion. SIAM J. Appl. Dyn. Syst. 13(1), 397–424 (2014). doi:10.1137/130923786

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli, L., Salsa, S.: A geometric approach to free boundary problems, Graduate Studies in Mathematics, vol. 68. American Mathematical Society, Providence, RI, 2005. doi:10.1090/gsm/068

  15. Caffarelli, L., Vazquez, J.L.: Viscosity solutions for the porous medium equation. In: Differential equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., vol. 65, pp. 13–26. Amer. Math. Soc., Providence, RI, 1999. doi:10.1090/pspum/065/1662747

  16. Carrillo, J.A., Hittmeir, S., Volzone, B., Yao, Y.: Nonlinear aggregation–diffusion equations: radial symmetry and long time asymptotics, in preparation

  17. Carrillo, J.A.; Lisini, S.; Mainini, E.: Uniqueness for Keller-Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34(4), 1319–1338 (2014). doi:10.3934/dcds.2014.34.1319

    Article  MathSciNet  MATH  Google Scholar 

  18. Carrillo, J.A.; McCann, R.J.; Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179(2), 217–263 (2006). doi:10.1007/s00205-005-0386-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Chuang, Y.L., Huang, Y., D'Orsogna, M., Bertozzi, A.: Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials. IEEE International Conference on Robotics and Automation, pp. 2292–2299, 2007

  20. Craig, K.: Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions, preprint at http://arxiv.org/abs/1512.07255

  21. Doye, J.P.K.; Wales, D.J.; Berry, R.S.: The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4249 (1995)

    Article  ADS  Google Scholar 

  22. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fellner, K.; Raoul, G.: Stable stationary states of non-local interaction equations. Math. Models Methods Appl. Sci. 20(12), 2267–2291 (2010). doi:10.1142/S0218202510004921

    Article  MathSciNet  MATH  Google Scholar 

  24. Fetecau, R.C.; Huang, Y.: Equilibria of biological aggregations with nonlocal repulsive-attractive interactions. Phys. D 260, 49–64 (2013). doi:10.1016/j.physd.2012.11.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Fetecau, R.C.; Huang, Y.; Kolokolnikov, T.: Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681–2716 (2011). doi:10.1088/0951-7715/24/10/002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Fusco, N., Maggi, F., Pratelli, A.: Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8(5), 51–71, 2009

  27. Jordan, R.; Kinderlehrer, D.; Otto, F.: The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998). doi:10.1137/S0036141096303359

    Article  MathSciNet  MATH  Google Scholar 

  28. Judovič, V.I.: Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066, 1963

  29. Keller, E., Segel, L.: Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol. 26, 1970

  30. Kim, I., Pozar, N.: Porous medium equation to Hele-Shaw flow with general initial density, preprint at http://arxiv.org/abs/1509.06287

  31. Kim, I.; Yao, Y.: The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44(2), 568–602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim, I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration. Mech. Anal. 168(4), 299–328 (2003). doi:10.1007/s00205-003-0251-z

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, I.C.; Lei, H.K.: Degenerate diffusion with a drift potential: a viscosity solutions approach. Discrete Contin. Dyn. Syst. 27(2), 767–786 (2010). doi:10.3934/dcds.2010.27.767

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieb, E.H.; Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  35. Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174, 1987. http://projecteuclid.org/euclid.cmp/1104159813

  36. Lin, F.; Zhang, P.: On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete Contin. Dyn. Syst. 6(1), 121–142 (2000). doi:10.3934/dcds.2000.6.121

    MathSciNet  MATH  Google Scholar 

  37. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145, 1984. http://www.numdam.org/item?id=AIHPC_1984__1_2_109_0

  38. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68–79, 2006. doi:10.1016/j.matpur.2006.01.005

  39. Masmoudi, N.; Zhang, P.: Global solutions to vortex density equations arising from sup-conductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4), 441–458 (2005). doi:10.1016/j.anihpc.2004.07.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Maury, B.; Roudneff-Chupin, A.; Santambrogio, F.: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci. 20(10), 1787–1821 (2010). doi:10.1142/S0218202510004799

    Article  MathSciNet  MATH  Google Scholar 

  41. Maury, B.; Roudneff-Chupin, A.; Santambrogio, F.; Venel, J.: Handling congestion in crowd motion modeling. Netw. Heterog. Media 6(3), 485–519 (2011). doi:10.3934/nhm.2011.6.485

    Article  MathSciNet  MATH  Google Scholar 

  42. Mellet, A., Perthame, B., Quiros, F.: A Hele-Shaw problem for tumor growth, preprint at http://arxiv.org/abs/1512.069957

  43. Perea, L.; Gómez, G.; Elosegui, P.: Extension of the Cucker-Smale control law to space flight formations. AIAA J. Guid. Control Dyn. 32, 527–537 (2009)

    Article  ADS  Google Scholar 

  44. Poupaud, F.: Diagonal defect measures, adhesion dynamics and Euler equation. Methods Appl. Anal. 9(4), 533–561 (2002). doi:10.4310/MAA.2002.v9.n4.a4

    MathSciNet  MATH  Google Scholar 

  45. Rechtsman, M.; Stillinger, F.; Torquato, S.: Optimized interactions for targeted self-assembly: application to a honeycomb lattice. Phys. Rev. Lett. 95(22), 228301 (2005)

    Article  ADS  Google Scholar 

  46. Santambrogio, F.: Optimal transport for applied mathematicians. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser/Springer, Cham, 2015. doi:10.1007/978-3-319-20828-2. Calculus of variations, PDEs, and modeling

  47. Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19(8), 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Sun, H., Uminsky, D., Bertozzi, A.L.: Stability and clustering of self-similar solutions of aggregation equations. J. Math. Phys. 53(11), 115,610, 18, 2012. doi:10.1063/1.4745180

  49. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3(4), 697–718, 1976

  50. Topaz, C.M.; Bertozzi, A.L.; Lewis, M.A.: A nonlocal continuum model forbiological aggregation. Bull. Math. Biol. 68(7), 1601–1623 (2006). doi:10.1007/s11538-006-9088-6

    Article  MathSciNet  MATH  Google Scholar 

  51. Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. Mathematical theory

  52. Villani, C.: Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  53. Wales, D.: Energy landscapes of clusters bound by short-ranged potentials. Chem. Eur. J. Chem. Phys. 11, 2491–2494 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy Craig.

Additional information

Communicated by D. Kinderlehrer

Katy Craig is supported by a UC President’s Postdoctoral Fellowship and by the NSF Grant DMS-1401867.

Inwon Kim is supported by the NSF Grant DMS-1300445.

Yao Yao is supported by the NSF Grant DMS-1565480.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig, K., Kim, I. & Yao, Y. Congested Aggregation via Newtonian Interaction. Arch Rational Mech Anal 227, 1–67 (2018). https://doi.org/10.1007/s00205-017-1156-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1156-6

Navigation