Skip to main content
Log in

A Variational Framework for Spectral Approximations of Kohn–Sham Density Functional Theory

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We reformulate the Kohn–Sham density functional theory (KSDFT) as a nested variational problem in the one-particle density operator, the electrostatic potential and a field dual to the electron density. The corresponding functional is linear in the density operator and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, termed spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We prove convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams B.: Sobolev Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  2. Anantharaman A., Cancès E.: Existence of minimizers for Kohn–Sham models in quantum chemistry. Ann. Inst. Henri Poincare Anal. Non-Lineaire 26(6), 2425–2455 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ismail-Beigi, S., Arias, T.: New algebraic formulation of density functional calculation. Comput. Phys. Commun. (2000)

  4. Arveson W.: Ten Lectures on Operator Algebras. American Mathematical Society, Providence (1980)

    MATH  Google Scholar 

  5. Baer, R., Head-Gordon, M.: Chebyshev expansion methods for electronic structure calculations on large molecular systems. J. Chem. Phys. 107 (1997)

  6. Bergh J., Löfström J.: Interpolation Spaces. An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  7. Bolwer, D.R., Miyazaki, T.: Order-N methods in electronic structure calculations. Rep. Prog. Phys. 75 (2009)

  8. Braides A.: Gamma-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  9. Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Book  Google Scholar 

  10. Catto I., Le Bris C., Lions P.L.: On the thermodynamic limit for Hartree–Fock type models. Ann. Inst. Henri Poincare Anal. Non-Lineaire 18(6), 687–760 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ceperley D.M., Alder B.J.: Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 45(7), 566–569 (1980)

    Article  ADS  Google Scholar 

  12. García-Cervera, E.J., Liu, J., Xuan, Y., E, W.: Linear-scaling subspace iteration algorithm with optimally localized nonorthogonal wave functions for Kohn–Sham density functional theory. Phys. Rev. B 79 (2009)

  13. Dal Maso G.: An Introduction to Gamma-Convergence. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  14. Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  15. Evans L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  16. Jost J.: Calculus of Variations. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  17. Gavini V., Knap J., Bhattacharya K., Ortiz M.: Non-periodic finite-element formulation of orbital-free density functional theory. J. Mech. Phys. Solids 55, 669–696 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gillian, M.J.: Calculation of the vacancy formation energy in alumnium. J. Phys. 4 (1989)

  19. Goekecker, S., Teter, M.: Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B 51 (1995)

  20. Goekecker, S.: Linear scaling electronic structure methods. Rev. Modern Phys. 71(4) (1999)

  21. Lin, L., Chen, M., Yang, C., He, Y.: Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion. J. Phys. 25(29) (2013)

  22. Parlett, B.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998

  23. Parr R., Yang W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1994)

    Google Scholar 

  24. Perdew J.P., Zunger A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048–5079 (1981)

    Article  ADS  Google Scholar 

  25. Perdew, J., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45 (1992)

  26. Reed M., Simon B.: Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  27. Rudin W.: Functional Analysis. McGraw-Hill, Boston (1991)

    MATH  Google Scholar 

  28. Skylaris, C-K, Haynes, P., Mostofi, A., Payne, M.C.: Introducing ONETEP: Linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122 (2005)

  29. Suryanarayana P., Bhattacharya K., Ortiz M.: Coarse graining Kohn–Sham density functional theory. J. Mech. Phys. Solids 61(1), 38–60 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Suryanarayana P., Gavini V., Blesgen T., Bhattacharya K., Ortiz M.: Non-periodic finite-element formulation of Kohn–Sham density functional theory. J. Mech. Phys. Solids 58, 256–280 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Suryanarayana P.: On spectral quadrature for linear-scaling density functional theory. Chem. Phys. Lett. 584, 182–187 (2013)

    Article  ADS  Google Scholar 

  32. Suryanarayana P.: Optimized purification for density matrix calculation. Chem. Phys. Lett. 555, 291–295 (2013)

    Article  ADS  Google Scholar 

  33. Sylvester J.J.: A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. Philos. Mag. 4(23), 138–142 (1852)

    Google Scholar 

  34. VandeVondele, J., et al.: Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2(167) (2005)

  35. Veling, E.J.M.: Lower bounds for the infimum of the spectrum of the Schrodinger operator in \({\mathbb{R}^{N}}\) and the Sobolev inequalities. J. Inequal. Pure Appl. Math. 3(4) (2002)

  36. Vosko S.H., Wilk L., Nusair M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58(8), 1200–1211 (1980)

    Article  ADS  Google Scholar 

  37. Wang, X.: A variational framework for spectral discretization of the density matrix in Kohn Sham density functional theory. Dissertation (Ph.D.), California Institute of Technology (2015). http://resolver.caltech.edu/CaltechTHESIS:04132015-160812309

  38. Wheeden R., Zygmund A.: Measure and Integral: An Introduction to Real Analysis. Marcel Dekker, New York (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ortiz.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XC., Blesgen, T., Bhattacharya, K. et al. A Variational Framework for Spectral Approximations of Kohn–Sham Density Functional Theory. Arch Rational Mech Anal 221, 1035–1075 (2016). https://doi.org/10.1007/s00205-016-0978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-0978-y

Keywords

Navigation