Skip to main content

Advertisement

Log in

Pro-inflammatory effects of silver nanoparticles in the intestine

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi E et al (2016) Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol 42(2):173–180

    CAS  PubMed  Google Scholar 

  • Actor JK (2012) 2 - Cells and Organs of the Immune System. In: Actor JK (ed) Elsevier’s Integrated Review Immunology and Microbiology (Second Edition). W.B. Saunders, Philadelphia, pp 7–16

    Chapter  Google Scholar 

  • Adcock IM, Caramori G (2009) Chapter 31 - Transcription Factors. In: Barnes PJ et al (eds) Asthma and COPD (Second Edition). Academic Press, Oxford, pp 373–380

    Chapter  Google Scholar 

  • Akter M et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  PubMed  Google Scholar 

  • Ambrožová N et al (2017) Low concentrations of silver nanoparticles have a beneficial effect on wound healing in vitro. J Nanopart Res 19(3):108

    Article  CAS  Google Scholar 

  • Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2):151–165

    Article  CAS  PubMed  Google Scholar 

  • AshaRani PV et al (2012) Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integrity 3(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz SG-G, Aziz SG-G, Akbarzadeh A (2017) Advances in silver nanotechnology: an update on biomedical applications and future perspectives. Drug Research 67(4):198–203

    Article  CAS  PubMed  Google Scholar 

  • Bain CC, Schridde A (2018) Origin differentiation, and function of intestinal macrophages. Front Immunol 9:2733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayda S et al (2019) The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules (basel, Switzerland) 25(1):112

    Article  CAS  Google Scholar 

  • Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    CAS  Google Scholar 

  • Böhmert L et al (2015) Molecular mechanism of silver nanoparticles in human intestinal cells. Nanotoxicology 9(7):852–860

    Article  PubMed  CAS  Google Scholar 

  • Bondy SC, Campbell A (2016) Inflammation, aging, and oxidative stress. Springer, Berlin

    Book  Google Scholar 

  • Buford TW (2017) (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 5(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Bumbudsanpharoke N, Choi J, Ko S (2015) Applications of nanomaterials in food packaging. J Nanosci Nanotechnol 15(9):6357–6372

    Article  CAS  PubMed  Google Scholar 

  • Cattò C et al (2019) Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in-vitro gut model. Environom Pollut 245:754–763

    Article  CAS  Google Scholar 

  • Cavaleri F, Schöler H (2009) Chapter 6 - Molecular Bases of Pluripotency. In: Lanza R et al (eds) Essentials of Stem Cell Biology (Second Edition). Academic Press, San Diego, pp 37–60

    Chapter  Google Scholar 

  • Chalew TEA, Schwab KJ (2013) Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol 29(2):101–116

    Article  CAS  Google Scholar 

  • Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–S23

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen N et al (2016) Toxicological effects of caco-2 cells following short-term and long-term exposure to Ag nanoparticles. Int J Mol Sci 17(6):974

    Article  PubMed Central  CAS  Google Scholar 

  • Clark A, Mach N (2017) The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 8:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Council, E. R. The Nanodatabase. http://nanodb.dk/en/. Accessed 16 Apr 2020

  • Cresci GAM, Izzo K (2019) Chapter 4 - gut microbiome. In: Corrigan ML, Roberts K, Steiger E (eds) Adult short bowel syndrome. Academic Press, pp 45–54

    Chapter  Google Scholar 

  • Cueva C et al (2019) Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota. Food Chem Toxicol 132: 110657

  • Dave M, Papadakis KA, Faubion WA Jr (2014) Immunology of inflammatory bowel disease and molecular targets for biologics. Gastroenterol Clin North Am 43(3):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  • De Matteis V et al (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8(5):319

    Article  PubMed Central  CAS  Google Scholar 

  • Della Pelle F, Compagnone D (2018) Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors 18(2):462

    Article  PubMed Central  CAS  Google Scholar 

  • Di Silvio D et al (2016) Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake. Int J Biochem Cell Biol 75:212–222

    Article  PubMed  CAS  Google Scholar 

  • Ducheyne P (2017) Comprehensive biomaterials II. Elsevier, The Netherlands

    Google Scholar 

  • Dumitrescu L et al (2018) Oxidative stress and the microbiota-gut-brain axis. Oxid Med Cell Longev 2018:2406594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elia P et al (2015) The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Mediat Inflamm 2015:1–10

    Article  CAS  Google Scholar 

  • Eom H-J, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342

    Article  CAS  PubMed  Google Scholar 

  • Fauss E (2008) The silver nanotechnology commercial inventory. University of Virginia

  • Fay KT, Ford ML, Coopersmith CM (2017) The intestinal microenvironment in sepsis. Biochimica et biophysica acta. Mol Basis Dis 1863(10 Pt B): 2574–2583

  • Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21(7):2375

    Article  CAS  PubMed Central  Google Scholar 

  • Firdhouse J, Lalitha P (2015) Biosynthesis of silver nanoparticles and its applications. J Nanotechnol 2015:1–18

    Article  CAS  Google Scholar 

  • Flores-López LZ, Espinoza-Gómez H, Somanathan R (2019) Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J Appl Toxicol 39(1):16–26

    Article  PubMed  CAS  Google Scholar 

  • Freitas M et al (2020) Small-size silver nanoparticles stimulate neutrophil oxidative burst through an increase of intracellular calcium levels. World Acad Sci J 2(3):1–1

    Google Scholar 

  • Friedrich M, Pohin M, Powrie F (2019) Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50(4):992–1006

    Article  CAS  PubMed  Google Scholar 

  • Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discovery 15:551

    Article  CAS  PubMed  Google Scholar 

  • Gaillet S, Rouanet J-M (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–a review. Food Chem Toxicol 77:58–63

    Article  CAS  PubMed  Google Scholar 

  • Galdiero S et al (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garuglieri E et al (2017) Effects of sub-lethal concentrations of silver nanoparticles on a simulated intestinal prokaryotic-eukaryotic interface. Front Microbiol 8:2698

    Article  PubMed  Google Scholar 

  • Georgantzopoulou A et al (2015) Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol 13(1):1–17

    Article  CAS  Google Scholar 

  • Gorbach S (1996) Chapter 95: Microbiology of the gastrointestinal tract. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, Galveston

    Google Scholar 

  • Guan Q (2019) A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res

  • Gurunathan S et al (2018) Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int J Mol Sci 19(8):2269

    Article  PubMed Central  CAS  Google Scholar 

  • Gustafson HH et al (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10(4):487–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase A et al (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126(2):457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen SF et al (2016) Nanoproducts–what is actually available to European consumers? Environ Sci Nano 3(1):169–180

    Article  CAS  Google Scholar 

  • Hillman ET et al (2017) Microbial ecology along the gastrointestinal tract. Microbes Environ 32(4):300–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Hine AM (2019) Intestinal macrophages in resolving inflammation. J Immunol 203(3):593–599

    Article  CAS  PubMed  Google Scholar 

  • Hsin Y-H et al (2008) The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139

    Article  CAS  PubMed  Google Scholar 

  • Ivanova N et al. (2018) Silver Nanoparticles as Multi-Functional Drug Delivery Systems, in Nanomedicines. IntechOpen

  • Jackson DN, Theiss AL (2020) Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes 11(3):285–304

    Article  PubMed  CAS  Google Scholar 

  • Jeevanandam J et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia M et al (2020) Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 cells. Int J Mol Sci 21(5):1618

    Article  CAS  PubMed Central  Google Scholar 

  • Kämpfer AAM et al (2020) Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol in Vitro 63:104738–104738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang SJ et al (2012) Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Kapka-Skrzypczak L et al. (2020) Nuclear Factor kappa B activation by Ag, Au nanoparticles, CdTe quantum dots or their binary mixtures in HepG2 cells. Annal Agricul Environm Med https://doi.org/10.26444/aaem/120664

  • Kim S, Choi I-H (2012) Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med J 53(3):654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight J, Nigam Y (2019) Gastrointestinal tract 6: the effects of gut microbiota on human health. Nurs times 115(11):46–50

    Google Scholar 

  • Kononenko V, Narat M, Drobne D (2015) Nanoparticle interaction with the immune system/Interakcije nanodelcev z imunskim sistemom. Arch Ind Hyg Toxicol 66(2):97–108

    Google Scholar 

  • Kumar V et al. (2014) Robbins and Cotran Pathologic Basis of Disease, Professional Edition E-Book. 2014: Elsevier Health Sciences

  • Lamas B, Martins Breyner N, Houdeau E (2020) Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Particle Fibre Toxicol 17(1):19

    Article  Google Scholar 

  • Lauridsen C (2019) From oxidative stress to inflammation: redox balance and immune system. Poult Sci 98(10):4240–4246

    Article  CAS  PubMed  Google Scholar 

  • Lazar V et al (2018) Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol 9:1830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SH, Kwon JE, Cho M-L (2018) Immunological pathogenesis of inflammatory bowel disease. Intest Res 16(1):26–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochimica et biophysica acta (BBA) Bioenergetics. 1366(1): 53–67

  • Li J, Tang M, Xue Y (2019) Review of the effects of silver nanoparticle exposure on gut bacteria. J Appl Toxicol 39(1):27–37

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhang C (2021) Are silver nanoparticles better than triclosan as a daily antimicrobial? Answers from the perspectives of gut microbiome disruption and pathogenicity. Sci Total Environ 756:143983

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2017) Long-term anti-inflammatory efficacy in intestinal anastomosis in mice using silver nanoparticle-coated suture. J Pediatr Surg 52(12):2083–2087

    Article  PubMed  Google Scholar 

  • Liu W, Worms I, Slaveykova VI (2020) Interaction of silver nanoparticles with antioxidant enzymes. Environ Sci Nano 7(5):1507–1517

    Article  CAS  Google Scholar 

  • Loeschner K et al (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y-H, Chang LW, Lin P (2015) Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. BioMed Res Int 2015:143720

    PubMed  PubMed Central  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma TY, Anderson JM, Turner JR (2012) Chapter 38 - Tight Junctions and the Intestinal Barrier. In: Johnson LR et al (eds) Physiology of the Gastrointestinal Tract (Fifth Edition). Academic Press, Boston, pp 1043–1088

    Chapter  Google Scholar 

  • Majdalawieh A et al (2014) Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 14(7):4757–4580

    Article  CAS  PubMed  Google Scholar 

  • Man SM (2018) Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol 15(12):721–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marciano F, Vajro P (2017) Chapter 8 - oxidative stress and gut microbiota**conflict of interest: none, in gastrointestinal tissue, Gracia-Sancho J, Salvadó J, Editors. Academic Press. p. 113–123

  • Martirosyan A et al (2016) Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Toxicol Lett 253:36–45

    Article  CAS  PubMed  Google Scholar 

  • Martirosyan A et al. (2021) Food nanoparticles and intestinal inflammation: A Real Risk?

  • Mathur P et al (2018) Pharmaceutical aspects of silver nanoparticles. Artific Cells Nanomed Biotechnol 46(sup1):115–126

    Article  CAS  Google Scholar 

  • Maurer L, Meyer J (2016) A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ Sci Nano 3(2):311–322

    Article  CAS  Google Scholar 

  • McClements DJ, Xiao H (2017) Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles. Sci Food 1(1):6

    Google Scholar 

  • McCracken C et al (2015) Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles. Toxicol in Vitro 29(7):1793–1808

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435

    Article  CAS  PubMed  Google Scholar 

  • Merrifield DL et al (2013) Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environ Pollut 174:157–163

    Article  CAS  PubMed  Google Scholar 

  • Miethling-Graff R et al (2014) Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol in Vitro 28(7):1280–1289

    Article  CAS  PubMed  Google Scholar 

  • Mitsuyama K et al (2001) Transcription factor-targeted therapies in inflammatory bowel disease. Digestion 63(Suppl 1):68–72

    Article  CAS  PubMed  Google Scholar 

  • Mohammadinejad R et al (2019) Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15(1):4–33

    Article  CAS  PubMed  Google Scholar 

  • Na YR et al (2019) Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 16(9):531–543

    Article  CAS  PubMed  Google Scholar 

  • Nanocomposix. Silver nanoparticles surfaces. 2004 [cited 2020 09/06/2020]; Available from: https://nanocomposix.com/pages/nanocomposix-university#surfaces.

  • Neves AR, Reis S (2018) Nanoparticles in Life Sciences and Biomedicine. CRC Press.

  • Ninan N, Goswami N, Vasilev K (2020) The impact of engineered silver nanomaterials on the immune system. Nanomaterials 10(5):967

    Article  CAS  PubMed Central  Google Scholar 

  • Nishanth RP et al (2011) Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway. Nanotoxicology 5(4):502–516

    Article  CAS  PubMed  Google Scholar 

  • Novak EA, Mollen KP (2015) Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Develop Biol 3(62)

  • Opal SM, DePalo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Orr SE et al (2019) Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats. J Nanobiotechnol 17(1):63–63

    Article  Google Scholar 

  • Ott M et al (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922

    Article  CAS  PubMed  Google Scholar 

  • Ottman N et al (2012) The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2:104–104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paino IMM, Zucolotto V (2015) Poly (vinyl alcohol)-coated silver nanoparticles: Activation of neutrophils and nanotoxicology effects in human hepatocarcinoma and mononuclear cells. Environ Toxicol Pharmacol 39(2):614–621

    Article  CAS  PubMed  Google Scholar 

  • Panzarini E et al (2013) Nanomaterials and autophagy: new insights in cancer treatment. Cancers 5(1):296–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parigi S et al (2015) Breast milk and solid food shaping intestinal immunity. Front Immunol 6:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pathakoti K, Manubolu M, Hwang H-M (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25(2):245–253

    Article  CAS  PubMed  Google Scholar 

  • Piao MJ et al (2011) Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells. Toxicol Lett 207(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Pleńkowska J, Gabig-Cimińska M, Mozolewski P (2020) Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int J Mol Sci 21(17):6206

    Article  PubMed Central  CAS  Google Scholar 

  • Polet M et al (2020) Soluble silver ions from silver nanoparticles induce a polarised secretion of interleukin-8 in differentiated Caco-2 cells. Toxicol Lett 325:14–24

    Article  CAS  PubMed  Google Scholar 

  • Prasad RY et al (2013) Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: Effect of size, surface coating, and intracellular uptake. Toxicol in Vitro 27(6):2013–2021

    Article  CAS  PubMed  Google Scholar 

  • Rath E, Moschetta A, Haller D (2018) Mitochondrial function — gatekeeper of intestinal epithelial cell homeostasis. Nat Rev Gastroenterol Hepatol 15(8):497–516

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro D et al (2018) Immunomodulatory effects of flavonoids in the prophylaxis and treatment of inflammatory bowel diseases: a comprehensive review. Curr Med Chem 25(28):3374–3412

    Article  CAS  PubMed  Google Scholar 

  • Rinna A et al (2015) Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 30(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Rinninella E et al (2019) What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14

    Article  CAS  PubMed Central  Google Scholar 

  • Rizzetto L et al (2018) Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 92:12–34

    Article  CAS  PubMed  Google Scholar 

  • Rossi M et al (2017) Chapter five - nanotechnology for food packaging and food quality assessment. In: Toldrá F (ed) Advances in food and nutrition research. Academic Press, pp 149–204

    Google Scholar 

  • Rozmer Z, Perjési P (2016) Naturally occurring chalcones and their biological activities. Phytochem Rev 15(1):87–120

    Article  CAS  Google Scholar 

  • Ruder B, Becker C (2020) At the forefront of the mucosal barrier: the role of macrophages in the intestine. Cells 9(10):2162

    Article  CAS  PubMed Central  Google Scholar 

  • Schauder DM, Cui W (2016) Transition of T cells from effector to memory phase. In: Ratcliffe MJH (ed) Encyclopedia of Immunobiology. Academic Press, Oxford, pp 353–362

    Chapter  Google Scholar 

  • Scott A et al (2004) What is “inflammation”? Are we ready to move beyond Celsus? Br J Sports Med 38(3):248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S et al (2019) Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering (basel) 6(1):26

    Article  CAS  Google Scholar 

  • Sies H (2019) Chapter 13 - Oxidative stress: eustress and distress in redox homeostasis. In: Fink G (ed) Stress: physiology, biochemistry, and pathology. Academic Press, pp 153–163

    Google Scholar 

  • Sindhi V et al (2013) Potential applications of antioxidants – A review. J Pharm Res 7(9):828–835

    CAS  Google Scholar 

  • Sittipo P et al (2018) Intestinal microbiota and the immune system in metabolic diseases. J Microbiol 56(3):154–162

    Article  CAS  PubMed  Google Scholar 

  • Smale ST, Natoli G (2014) Transcriptional control of inflammatory responses. Cold Spring Harb Perspect Biol 6(11):a016261–a016261

    Article  PubMed  PubMed Central  Google Scholar 

  • Soares T et al (2016) Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci 145:247–254

    Article  CAS  PubMed  Google Scholar 

  • Song Y et al (2014) In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutation Res Fundam Mol Mechan Mutag 769:113–118

    Article  CAS  Google Scholar 

  • Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13(9):613–626

    Article  CAS  PubMed  Google Scholar 

  • Sun M et al (2015) Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol 8(5):969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X et al (2017) NOX4- and Nrf2-mediated oxidative stress induced by silver nanoparticles in vascular endothelial cells. J Appl Toxicol 37(12):1428–1437

    Article  CAS  PubMed  Google Scholar 

  • Tian T, Wang Z, Zhang J (2017) Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017:4535194–4535194

    PubMed  PubMed Central  Google Scholar 

  • van der Zande M et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442

    Article  PubMed  CAS  Google Scholar 

  • Vance ME et al (2015) Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6(1):1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezza T et al (2020) Microbiota-mitochondria inter-talk: A potential therapeutic strategy in obesity and type 2 diabetes. Antioxidants 9(9):848

    Article  CAS  PubMed Central  Google Scholar 

  • Wei L et al (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today 20(5):595–601

    Article  CAS  PubMed  Google Scholar 

  • Wijnhoven SW et al (2009) Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–138

    Article  CAS  Google Scholar 

  • Williams K et al (2015) Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology 9(3):279–289

    Article  CAS  PubMed  Google Scholar 

  • Xu P et al (2019) Modulation of intestinal epithelial permeability by plasma from patients with Crohn’s disease in a three-dimensional cell culture model. Sci Rep 9(1):2030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J-M, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2):27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Sun T (2020) Transcription factors that regulate the pathogenesis of ulcerative colitis. Biomed Res Int 2020:7402657–7402657

    PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2014a) Silver nanoparticle-coated suture effectively reduces inflammation and improves mechanical strength at intestinal anastomosis in mice. J Pediatr Surg 49(4):606–613

    Article  PubMed  Google Scholar 

  • Zhang T et al (2014b) Cytotoxic potential of silver nanoparticles. Yonsei Med J 55(2):283–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y et al (2015) Inventory of engineered nanoparticle-containing consumer products available in the Singapore retail market and likelihood of release into the aquatic environment. Int J Environ Res Public Health 12(8):8717–8743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-F et al (2016) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Article  PubMed Central  CAS  Google Scholar 

  • Zolnik BS et al (2010) Minireview: nanoparticles and the immune system. Endocrinology 151(2):458–465

    Article  CAS  PubMed  Google Scholar 

  • Zorraquín-Peña I et al (2020) Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations. Microorganisms. 8(1):132

    Article  PubMed Central  CAS  Google Scholar 

Download references

Funding

The present work was supported by UID/QUI/50006/2020 with funding from FCT/MCTES through national funds and ‘Programa Operacional Competitividade e Internacionalização (COMPETE) (PTDC/NAN-MAT/29248/2017-POCI‑01‑0145‑FEDER‑029248). Adelaide Sousa thanks FCT (Fundação para a Ciência e Tecnologia) and ESF (European Social Fund) through POCH (Programa Operacional Capital Humano) for her PhD grant reference SFRH/BD/150656/2020. Marisa Freitas acknowledges her contract under the Scientific Employment Stimulus—Individual Call (CEEC Individual) 2020.04126.CEECIND/CP1596/CT0006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduarda Fernandes or Marisa Freitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, A., Bradshaw, T.D., Ribeiro, D. et al. Pro-inflammatory effects of silver nanoparticles in the intestine. Arch Toxicol 96, 1551–1571 (2022). https://doi.org/10.1007/s00204-022-03270-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-022-03270-w

Keywords

Navigation