Skip to main content

Advertisement

Log in

Ochratoxin A induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo

  • Biologics
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA) is a toxin produced by fungi such as Aspergillus spp. and Penicillium spp. The key target organ of OTA toxicity is the kidney, and it is known that epithelial-to-mesenchymal transition (EMT) leading to fibrosis is enhanced after long-term exposure of the kidney to OTA. However, the mechanisms responsible for this onset are not precisely known. Therefore, the purpose of this study was to investigate the mechanism of OTA-induced EMT and fibrosis in human proximal tubule HK-2 cells and mouse kidneys. Cells were treated for 48 h with various concentrations of OTA (50, 100, and 200 nM) and mice underwent oral administration of various doses of OTA (200 and 1000 μg/kg body weight) for 12 weeks. Blood urea nitrogen and creatinine levels were increased in the serum of OTA-treated mice, and fibrosis was observed in kidney tissues. Furthermore, alpha-smooth muscle actin (α-SMA) and fibronectin levels were increased, and E-cadherin level was decreased by OTA in both HK-2 cells and kidney tissues. In addition, the expression levels of TGF-β, smad2/3, and β-catenin were increased after OTA treatment. α-SMA, E-cadherin, and fibronectin were shown to be regulated by the activation of transcription factors, smad2/3 and β-catenin. These results demonstrated that OTA induces EMT and renal fibrosis through Smad2/3 and β-catenin signaling pathways in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhurst RJ, Balmain A (1999) Genetic events and the role of TGFβ in epithelial tumour progression. J Pathol 187(1):82–90

    CAS  PubMed  Google Scholar 

  • Baarsma H, Königshoff M (2017) ‘WNT-er is coming’: WNT signalling in chronic lung diseases. Thorax 72(8):746–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baghirova S, Hughes BG, Hendzel MJ, Schulz R (2015) Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX 2:440–445

    PubMed  PubMed Central  Google Scholar 

  • Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-β signaling in fibrosis. Growth Factors 29(5):196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binker MG, Binker-Cosen AA, Gaisano HY, de Cosen RH, Cosen-Binker LI (2011) TGF-β1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-κB/IL-6/MMP-2. Biochem Biophys Res Commun 405(1):140–145

    CAS  PubMed  Google Scholar 

  • Chang Y-Z, Yang L, Yang C-Q (2008) Migration of hepatic stellate cells in fibrotic microenvironment of diseased liver model. Hepatobiliary Pancreat Dis Int 7(4):401–405

    PubMed  Google Scholar 

  • Chen L, Yang T, Lu D-W et al (2018) Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 101:670–681

    CAS  PubMed  Google Scholar 

  • Cheng S, Lovett DH (2003) Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Am J Pathol 162(6):1937–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collier IE, Wilhelm S, Eisen A et al (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263(14):6579–6587

    CAS  PubMed  Google Scholar 

  • Delacruz L, Bach P (1990) The role of ochratoxin A metabolism and biochemistry in animal and human nephrotoxicity. J Biopharm Sci 1(3):277–304

    CAS  Google Scholar 

  • Duan W-J, Yu X, Huang X-R, Yu J-w, Lan HY (2014) Opposing roles for Smad2 and Smad3 in peritoneal fibrosis in vivo and in vitro. Am J Pathol 184(8):2275–2284

    CAS  PubMed  Google Scholar 

  • EFSA (2006) Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A in food. EFSA J 4(6):365

    Google Scholar 

  • EFSA (2020) Scientific opinion on the risks to public health related to the presence of ochratoxin A in food. Paper presented at the EFSA

  • Farias JS, Santos KM, Lima NK et al (2020) Maternal endotoxemia induces renal collagen deposition in adult offspring: Role of NADPH oxidase/TGF-β1/MMP-2 signaling pathway. Arch Biochem Biophys 684:108306

    CAS  PubMed  Google Scholar 

  • Fukuda N, Hu W-Y, Kubo A et al (2000) Angiotensin II upregulates transforming growth factor-β type I receptor on rat vascular smooth muscle cells. Am J Hypertens 13(2):191–198

    CAS  PubMed  Google Scholar 

  • Galtier P, Alvinerie M, Charpenteau J (1981) The pharmacokinetic profiles of ochratoxin A in pigs, rabbits and chickens. Food Cosmet Toxicol 19:735–738

    CAS  PubMed  Google Scholar 

  • Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN (2010) Markers of renal function tests. N Am J Med Sci 2(4):170–173

    PubMed  PubMed Central  Google Scholar 

  • Gu L, Zhu Y, Yang X, Guo ZJ, Xu W, Tian X (2007) Effect of TGF-β/Smad signaling pathway on lung myofibroblast differentiation 4. Acta Pharmacol Sin 28(3):382–391

    CAS  PubMed  Google Scholar 

  • Hay ED (1995) An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 154(1):8–20

    CAS  Google Scholar 

  • Hennemeier I, Humpf HU, Gekle M, Schwerdt G (2012) The food contaminant and nephrotoxin ochratoxin A enhances W nt1 inducible signaling protein 1 and tumor necrosis factor-α expression in human primary proximal tubule cells. Mol Nutr Food Res 56(9):1375–1384

    CAS  PubMed  Google Scholar 

  • Herrera J, Henke CA, Bitterman PB (2018) Extracellular matrix as a driver of progressive fibrosis. J Clin Invest 128(1):45–53

    PubMed  PubMed Central  Google Scholar 

  • IARC (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risks Hum 56:599

    Google Scholar 

  • Iimura O, Takahashi H, Yashiro T et al (2004) Effect of ureteral obstruction on matrix metalloproteinase-2 in rat renal cortex. J Clin Exp Nephrol 8(3):223–229

    CAS  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112(12):1776–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E-S, Kim M-S, Moon A (2004) TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 25(5):1375–1382

    CAS  PubMed  Google Scholar 

  • Kim MS, Lee HS, Kim YJ, Lee DY, Kang SG, Jin W (2019) MEST induces Twist-1-mediated EMT through STAT3 activation in breast cancers. Cell Death Differ 26(12):2594–2606

    CAS  PubMed  Google Scholar 

  • Korol A, Taiyab A, West-Mays JA (2016) RhoA/ROCK signaling regulates TGFβ-induced epithelial-mesenchymal transition of lens epithelial cells through MRTF-A. Mol Med 22(1):713–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper-Goodman T, Scott P (1989) Risk assessment of the mycotoxin ochratoxin A. Biomed Environ Sci 2(3):179–248

    CAS  PubMed  Google Scholar 

  • Lee HJ, Pyo MC, Shin HS, Ryu D, Lee K-W (2018a) Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem Toxicol 122:59–68

    CAS  PubMed  Google Scholar 

  • Lee J-H, Kim S-K, Khawar IA, Jeong S-Y, Chung S, Kuh H-J (2018b) Microfluidic co-culture of pancreatic tumor spheroids with stellate cells as a novel 3D model for investigation of stroma-mediated cell motility and drug resistance. J Exp Clin Cancer Res 37(1):4

    PubMed  PubMed Central  Google Scholar 

  • Li L, Li W (2015) Epithelial–mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 150:33–46

    CAS  PubMed  Google Scholar 

  • Liu Y (2011) Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7(12):684–696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovisa S, LeBleu VS, Tampe B et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21(9):998–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nam M-H, Son W-r, Yang S-Y, Lee Y-S, Lee K-W (2017) Chebulic acid inhibits advanced glycation end products-mediated vascular dysfunction by suppressing ROS via the ERK/Nrf2 pathway. J Funct Foods 36:150–161

    CAS  Google Scholar 

  • Pfohl-Leszkowicz A, Manderville RA (2007) Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res 51(1):61–99

    CAS  PubMed  Google Scholar 

  • Pohland A, Nesheim S, Friedman L (1992) Ochratoxin A: a review (technical report). Pure Appl Chem 64(7):1029–1046

    CAS  Google Scholar 

  • Radford R, Frain H, Ryan M, Slattery C, McMorrow T (2013) Mechanisms of chemical carcinogenesis in the kidneys. Int J Mol Sci 14(10):19416–19433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ringot D, Chango A, Schneider Y-J, Larondelle Y (2006) Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem Biol Interact 159(1):18–46

    CAS  PubMed  Google Scholar 

  • Roberts AB, Tian F, Byfield SD et al (2006) Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17(1–2):19–27

    CAS  PubMed  Google Scholar 

  • Sava V, Reunova O, Velasquez A, Harbison R, Sanchez-Ramos J (2006) Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology 27(1):82–92

    CAS  PubMed  Google Scholar 

  • Schwerdt G, Holzinger H, Königs M, Humpf H-U, Gekle M (2009) Effect of ochratoxin A on cell survival and collagen homeostasis in human mesangial cells in primary culture. Food Chem Toxicol 47(1):209–213

    CAS  PubMed  Google Scholar 

  • Sharma AK, Mauer SM, Kim Y, Michael AF (1995) Altered expression of matrix metalloproteinase-2, TIMP, and TIMP-2 in obstructive nephropathy. J Lab Clin Med 125(6):754–761

    CAS  PubMed  Google Scholar 

  • Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113(6):685–700

    CAS  PubMed  Google Scholar 

  • Shih J-Y, Yang P-C (2011) The EMT regulator slug and lung carcinogenesis. Carcinogenesis 32(9):1299–1304

    CAS  PubMed  Google Scholar 

  • Shin HS, Lee HJ, Pyo MC, Ryu D, Lee K-W (2019) Ochratoxin A-induced hepatotoxicity through phase I and phase II reactions regulated by AhR in liver cells. Toxins 11(7):377

    CAS  PubMed Central  Google Scholar 

  • Strutz F, Zeisberg M (2006) Renal fibroblasts and myofibroblasts in chronic kidney disease. J Am Soc Nephrol 17(11):2992–2998

    CAS  PubMed  Google Scholar 

  • Tan RJ, Zhou D, Liu Y (2016) Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis 2(3):136–144

    Google Scholar 

  • Tan RJ, Zhou D, Zhou L, Liu Y (2014) Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 4(1):84–90

    CAS  Google Scholar 

  • ten Dijke P, Miyazono K, Heldin C-H (2000) Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem Sci 25(2):64–70

    PubMed  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    CAS  PubMed  Google Scholar 

  • van Os CH (1987) Transcellular calcium transport in intestinal and renal epithelial cells. Biochim Biophys Acta Rev Biomembr 906(2):195–222

    Google Scholar 

  • Vidal A, Morales H, Sanchis V, Ramos AJ, Marín S (2014) Stability of DON and OTA during the breadmaking process and determination of process and performance criteria. Food Control 40:234–242

    CAS  Google Scholar 

  • Wiercinska E, Naber HP, Pardali E, van der Pluijm G, van Dam H, Ten Dijke P (2011) The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res Treat 128(3):657–666

    CAS  PubMed  Google Scholar 

  • Wilhelm S, Collier I, Marmer B, Eisen A, Grant G, Goldberg G (1989) SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 264(29):17213–17221

    CAS  PubMed  Google Scholar 

  • Yang J, Liu Y (2001) Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 159(4):1465–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Shultz RW, Mars WM et al (2002) Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J Clin Invest 110(10):1525–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S-Y, Lee S, Pyo MC, Jeon H, Kim Y, Lee K-W (2017) Improved physicochemical properties and hepatic protection of Maillard reaction products derived from fish protein hydrolysates and ribose. Food Chem 221:1979–1988

    CAS  PubMed  Google Scholar 

  • Yang X, Xu W, Huang K et al (2019) Precision toxicology shows that troxerutin alleviates ochratoxin A–induced renal lipotoxicity. FASEB J 33(2):2212–2227

    CAS  PubMed  Google Scholar 

  • Zeisberg M, Kalluri R (2012) Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304(3):C216–C225

    PubMed  PubMed Central  Google Scholar 

  • Zhu L, Yu T, Qi X et al (2016) Limited link between oxidative stress and ochratoxin A—induced renal injury in an acute toxicity rat model. Toxins 8(12):373

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the International Joint R&D Program (Q1624243) of the Agency for Korean National Food Cluster, Republic of Korea; a Korea University Grant (K2009551) from the School of Life Sciences, Republic of Korea; and the Biotechnology of Korea University for BK21PLUS, Republic of Korea. The authors would like to thank the Institute of Biomedical Science & Food Safety, CJ-Korea University Food Safety Hall (Seoul, Republic of Korea) for providing the equipment and facilities.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: MCP and K-WL. Analysis and interpretation of data: MCP and K-WL. Drafting of the manuscript: MCP, K-WL, SAC, and HJY. Final approval of the manuscript: K-WL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kwang-Won Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All studies involving animals were performed in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyo, M.C., Chae, S.A., Yoo, H.J. et al. Ochratoxin A induces epithelial-to-mesenchymal transition and renal fibrosis through TGF-β/Smad2/3 and Wnt1/β-catenin signaling pathways in vitro and in vivo. Arch Toxicol 94, 3329–3342 (2020). https://doi.org/10.1007/s00204-020-02829-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02829-9

Keywords

Navigation