Skip to main content

Advertisement

Log in

Toxicokinetics of urinary 2-ethylhexyl salicylate and its metabolite 2-ethyl-hydroxyhexyl salicylate in humans after simulating real-life dermal sunscreen exposure

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Chemical UV filters are common components in sunscreens and cosmetic products. The question of adverse health risks is not completely resolved, partly owing to lacking human data from dermal exposure, which are essential for sound risk assessment. Therefore, we investigated the urinary toxicokinetics of 2-ethylhexyl salicylate (EHS) after a 1-day dermal real-life sunscreen application scenario. Twenty human volunteers were dermally exposed to a commercial sunscreen for 9 h under real-life conditions (2 mg/cm2 body surface area; double re-application; corresponding to 3.8 g EHS). Urine samples were analyzed for EHS and one of its specific metabolites 2-ethyl-5-hydroxyhexyl salicylate (5OH-EHS) using a two-dimensional liquid chromatographic electrospray–ionization tandem mass spectrometric procedure. EHS and 5OH-EHS were excreted after sunscreen application and reached up to 525 µg/g and 213 µg/g creatinine, respectively. The toxicokinetic models showed concentration peaks between 7 and 8 h after first application. First-phase terminal half-lives were 8–9 h. For 5OH-EHS, a second-phase terminal half-life could be determined (87 h). EHS and 5OH-EHS showed a faster elimination with 70–80% of the overall excretion occurring within 24 h after application compared to more lipophilic UV filters. Cumulative excreted amounts over 24 h reached up to 334 µg EHS and 124 µg of 5OH-EHS. Simulated real-life sunscreen use for 1 day leads to the bioavailability of the UV filter EHS in humans. The kinetic profiles with a prolonged systemic availability indicate a skin depot and make accumulation during consecutive multi-day exposure likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bakdash JZ, Marusich LR (2017) Repeated measures correlation. Front Psychol 8:456

    Article  PubMed  PubMed Central  Google Scholar 

  • Bens G (2014) Sunscreens. Adv Exp Med Biol 810:429–463

    PubMed  Google Scholar 

  • Bury D, Bruning T, Koch HM (2019a) Determination of metabolites of the UV filter 2-ethylhexyl salicylate in human urine by online-SPE-LC-MS/MS. J Chromatogr B 1110–1111:59–66

    Article  CAS  Google Scholar 

  • Bury D, Griem P, Wildemann T, Bruning T, Koch HM (2019b) Urinary metabolites of the UV filter 2-ethylhexyl salicylate as biomarkers of exposure in humans. Toxicol Lett 309:35–41

    Article  CAS  PubMed  Google Scholar 

  • Chatelain E, Gabard B, Surber C (2003) Skin penetration and sun protection factor of five UV filters: effect of the vehicle. Skin Pharmacol Physiol 16(1):28–35

    Article  CAS  Google Scholar 

  • Destatis (2018) press release No. 19. Wiesbaden, Germany, Federal Statistical Office

  • Diffey BL (2001) When should sunscreen be reapplied? J Am Acad Dermatol 45(6):882–885

    Article  CAS  PubMed  Google Scholar 

  • DuBois D, DuBois EF (1989) A formula to estimate the approximate surface area if height and weight be known. Nutrition 5(5):303–311

    CAS  Google Scholar 

  • Duracher L, Blasco L, Abdel Jaoued A, Vian L, Marti-Mestres G (2009) Irradiation of skin and contrasting effects on absorption of hydrophilic and lipophilic compounds. Photochem Photobiol 85(6):1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Emilson A, Lindberg M, Forslind B (1993) The temperature effect on in vitro penetration of sodium lauryl sulfate and nickel chloride through human skin. Acta Derm Venereol 73(3):203–207

    CAS  PubMed  Google Scholar 

  • European Chemicals Agency (2019) ECHA disseminated dossier CAS 118-60-5 (2-ethylhexyl salicylate). https://echa.europa.eu/de/registration-dossier/-/registered-dossier/14203/4/1. Accessed 19 July 2019

  • Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 124(6):869–871

    Article  CAS  PubMed  Google Scholar 

  • Gilbert E, Pirot F, Bertholle V, Roussel L, Falson F, Padois K (2013) Commonly used UV filter toxicity on biological functions: review of last decade studies. Int J Cosmet Sci 35(3):208–219

    Article  CAS  PubMed  Google Scholar 

  • Göen T, von Helden F, Eckert E, Knecht U, Drexler H, Walter D (2016) Metabolism and toxicokinetics of 1,4-dioxane in humans after inhalational exposure at rest and under physical stress. Arch Toxicol 90(6):1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Hiller J, Klotz K, Meyer S, Uter W, Hof K, Greiner A, Göen T, Drexler H (2019) Systemic availability of lipophilic organic UV filters through dermal sunscreen exposure. Environ Int. https://doi.org/10.1016/j.envint.2019.105068

    Article  Google Scholar 

  • ISO 24444:2010 (2010) Cosmetics—sun protection test methods—in vivo determination of the sun protection factor (SPF). International Organization for Standardization, Geneva

    Google Scholar 

  • Jiang R, Roberts MS, Collins DM, Benson HA (1999) Absorption of sunscreens across human skin: an evaluation of commercial products for children and adults. Br J Clin Pharmacol 48(4):635–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungman E, Laugel C, Kasselouri A, Baillet-Guffroy A (2012) Study of the potential of stratum corneum lipids and exogenous molecules interaction by fluorescence spectroscopy for the estimation of percutaneous penetration. Int J Pharm 434(1–2):183–190

    Article  CAS  PubMed  Google Scholar 

  • Kerr AC (2011) A survey of the availability of sunscreen filters in the UK. Clin Exp Dermatol 36(5):541–543

    Article  CAS  PubMed  Google Scholar 

  • Khemiri R, Cote J, Fetoui H, Bouchard M (2018) Kinetic time courses of lambda-cyhalothrin metabolites after dermal application of Matador EC 120 in volunteers. Toxicol Lett 296:132–138

    Article  CAS  PubMed  Google Scholar 

  • Klemsdal TO, Gjesdal K, Bredesen JE (1992) Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin. Eur J Clin Pharmacol 43(6):625–628

    Article  CAS  PubMed  Google Scholar 

  • Klotz K, Hof K, Hiller J, Göen T, Drexler H (2019) Quantification of prominent organic UV filters and their metabolites in human urine and plasma samples. J Chromatogr B 1125:121706. https://doi.org/10.1016/j.jchromb.2019.06.033

    Article  CAS  Google Scholar 

  • Kunz PY, Fent K (2006) Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish. Aquat Toxicol 79(4):305–324

    Article  CAS  PubMed  Google Scholar 

  • Larsen K (1972) Creatinine assay by a reaction-kinetic principle. Clin Chim Acta 41:209–217

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Garcia MT, Bentley MV (2015) Chemical penetration enhancers. Ther Deliv 6(9):1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Mancuso JB, Maruthi R, Wang SQ, Lim HW (2017) Sunscreens: an update. Am J Clin Dermatol 18(5):643–650

    Article  PubMed  Google Scholar 

  • Manova E, von Goetz N, Hauri U, Bogdal C, Hungerbuhler K (2013) Organic UV filters in personal care products in Switzerland: a survey of occurrence and concentrations. Int J Hyg Environ Health 216(4):508–514

    Article  CAS  PubMed  Google Scholar 

  • Matta MK, Zusterzeel R, Pilli NR, Patel V, Volpe DA, Florian J, Oh L, Bashaw E, Zineh I, Sanabria C, Kemp S, Godfrey A, Adah S, Coelho S, Wang J, Furlong LS, Ganley C, Michele T, Strauss DG (2019) Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA 321(21):2082–2091. https://doi.org/10.1001/jama.2019.5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen B, Wulf HC (2014) Application of sunscreen–theory and reality. Photodermatol Photoimmunol Photomed 30(2–3):96–101

    Article  PubMed  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-plus. Springer-Verlag, New York

    Book  Google Scholar 

  • Pirotta G (2015) An overview of sunscreen regulations in the world. Househ Pers Care Today 10(4):17–22

    CAS  Google Scholar 

  • Rehfeld A, Dissing S, Skakkebaek NE (2016) Chemical UV filters mimic the effect of progesterone on Ca(2+) signaling in human sperm cells. Endocrinology 157(11):4297–4308

    Article  CAS  Google Scholar 

  • Rehfeld A, Egeberg DL, Almstrup K, Petersen JH, Dissing S, Skakkebaek NE (2018) EDC IMPACT: chemical UV filters can affect human sperm function in a progesterone-like manner. Endocr Connect 7(1):16–25

    Article  CAS  PubMed  Google Scholar 

  • Rom WN, Markowitz S (2007) Environmental and occupational medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Roussel L, Gilbert E, Salmon D, Serre C, Gabard B, Haftek M, Maibach HI, Pirot F (2015) Measurement, analysis and prediction of topical UV filter bioavailability. Int J Pharm 478(2):804–810

    Article  CAS  PubMed  Google Scholar 

  • Sarveiya V, Risk S, Benson HA (2004) Liquid chromatographic assay for common sunscreen agents: application to in vivo assessment of skin penetration and systemic absorption in human volunteers. J Chromatogr B 803(2):225–231

    Article  CAS  Google Scholar 

  • Schlumpf M, Schmid P, Durrer S, Conscience M, Maerkel K, Henseler M, Gruetter M, Herzog I, Reolon S, Ceccatelli R, Faass O, Stutz E, Jarry H, Wuttke W, Lichtensteiger W (2004) Endocrine activity and developmental toxicity of cosmetic UV filters—an update. Toxicology 205(1–2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Seite S, Del Marmol V, Moyal D, Friedman AJ (2017) Public primary and secondary skin cancer prevention, perceptions and knowledge: an international cross-sectional survey. J Eur Acad Dermatol Venereol 31(5):815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva ESD, Tavares R, Paulitsch FDS, Zhang L (2018) Use of sunscreen and risk of melanoma and non-melanoma skin cancer: a systematic review and meta-analysis. Eur J Dermatol 28(2):186–201

    PubMed  Google Scholar 

  • Stoeckelhuber M, Krnac D, Pluym N, Scherer M, Peschel O, Leibold E, Scherer G (2018) Human metabolism and excretion kinetics of the fragrance 7-hydroxycitronellal after a single oral or dermal dosage. Int J Hyg Environ Health 221(2):239–245

    Article  CAS  PubMed  Google Scholar 

  • Treffel P, Gabard B (1996) Skin penetration and sun protection factor of ultra-violet filters from two vehicles. Pharm Res 13(5):770–774

    Article  CAS  PubMed  Google Scholar 

  • Uter W, Goncalo M, Yazar K, Kratz EM, Mildau G, Liden C (2014) Coupled exposure to ingredients of cosmetic products: III. Ultraviolet filters. Contact Dermat 71(3):162–169

    Article  CAS  Google Scholar 

  • Walters KA, Brain KR, Howes D, James VJ, Kraus AL, Teetsel NM, Toulon M, Watkinson AC, Gettings SD (1997) Percutaneous penetration of octyl salicylate from representative sunscreen formulations through human skin in vitro. Food Chem Toxicol 35(12):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • WHO (1996) Biological monitoring of chemical exposure in the workplace. World Health Organization, Geneva

    Google Scholar 

  • Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer Verlag, New York

    Book  Google Scholar 

  • Williams AC, Barry BW (2004) Penetration enhancers. Adv Drug Deliv Rev 56(5):603–618

    Article  CAS  PubMed  Google Scholar 

  • Yap FH, Chua HC, Tait CP (2017) Active sunscreen ingredients in Australia. Australas J Dermatol 58(4):e160–e170

    Article  PubMed  Google Scholar 

  • Young AR, Claveau J, Rossi AB (2017) Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol 76(3S1):S100–S109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Bavarian State Office for Health and Food Safety for the determination of the UV filter concentrations of the sunscreen product and all study subjects for their participation. We would also like to take this opportunity to thank the staff of the Institute of Occupational, Social and Environmental Medicine, Erlangen, for their support during the conduct of the field study.

Funding

This study was carried out with financial support by the Bavarian State Ministry for Health and Care. The sponsor was not involved in the study design, collection, analysis or interpretation of data and in the publication of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Hiller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the local ethics committee of the University of Erlangen-Nürnberg (No. 122_17B) in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Informed written consent was obtained from each participant prior to inclusion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiller, J., Klotz, K., Meyer, S. et al. Toxicokinetics of urinary 2-ethylhexyl salicylate and its metabolite 2-ethyl-hydroxyhexyl salicylate in humans after simulating real-life dermal sunscreen exposure. Arch Toxicol 93, 2565–2574 (2019). https://doi.org/10.1007/s00204-019-02537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02537-z

Keywords

Navigation