Skip to main content

Advertisement

Log in

New insights into mechanism of bisphenol analogue neurotoxicity: implications of inhibition of O-GlcNAcase activity in PC12 cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Bisphenol analogues including bisphenol A and its derivatives are ubiquitous environmental contaminants and have been linked to adverse neurodevelopment effects on animals and humans. Most toxicological research focused on estrogen receptor mediated pathways and did not comprehensively clarify the observed toxicity. O-GlcNAcase (OGA), the highest level in brain, plays a critical role in controlling neuronal functions at multi-levels from molecule to animal behaviors. In this work, we intend to investigate the underlying molecular mechanisms for the neurotoxicity of bisphenol analogues by identifying their cellular targets and the resultant effects. The inhibitory actions of seven bisphenol analogues on the OGA activity at molecular level were investigated by our developed electrochemical biosensor. We found that their potency varied with substituent groups, in which tetrabromo bisphenol A (TBBPA) was the strongest. The seven bisphenol analogues (0–100 μM exposure) significantly inhibited OGA activity and up-regulated protein O-GlcNAcylation level in PC12 cells. Inhibition of OGA by bisphenol analogues further induced intracellular calcium, ROS, inflammation, repressed proliferation, interfered with cell cycle, induced apoptosis. And especially, 10 μM tetrabromo bisphenol A (TBBPA) exposure could impair the growth and development of neurite in human neural stem cells (hNSCs). Molecular docking for OGA/bisphenol analogue complexes revealed the hydrophobicity-dominated inhibition potency. OGA, as a new cellular target of bisphenol analogues, would illuminate the molecular mechanism of bisphenol analogues neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bertram L, Blacker D, Mullin K, Keeney D, Jones J, Basu S, Yhu S, McInnis MG, Go RCP, Vekrellis K, Selkoe DJ, Saunders AJ, Tanzi RE (2000) Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 290(5500):2302–2303

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Kannan K, Tan HL, Zheng ZG, Feng YL, Wu Y, Widelka M (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity a review. Environ Sci Technol 50(11):5438–5453

    Article  CAS  PubMed  Google Scholar 

  • Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62(SI):170–185

    Article  Google Scholar 

  • Fujimoto VY, Kim D, vom Saal FS, Lamb JD, Taylor JA, Bloom MS (2011) Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril 95(5):1816–1819

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J Biol Chem 276(13):9838–9845

    Article  CAS  PubMed  Google Scholar 

  • Geens T, Aerts D, Berthot C, Bourguignon JP, Goeyens L, Lecomte P, Maghuin-Rogister G, Pironnet AM, Pussemier L, Scippo ML, Van Loco J, Covaci A (2012) A review of dietary and nondietary exposure to bisphenol A. Food Chem Toxicol 50(10):3725–3740

    Article  CAS  PubMed  Google Scholar 

  • Government of Canada (2010) Order amending schedule I to the hazardous products act (bisphenol A), Part II, 144, 7. http://www.chemicalsubstanceschimiques.gc.ca/challeng-defi/batch-lot-2/bisphenol-a/bpa-risk_hazard-eng.php. Accessed 1 Jul 2015

  • Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446(7139):1017–1022

    Article  CAS  PubMed  Google Scholar 

  • Ji K, Hong S, Kho Y, Choi K (2013) Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish. Environ Sci Technol 47(15):8793–8800

    Article  CAS  PubMed  Google Scholar 

  • Kajta M, Wojtowicz AK (2013) Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol Rep 65(6):1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA (2015) Conditional knock-out reveals a requirement for O-linked N-acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem 290(11):7097–7113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinch CD, Ibhazehiebo K, Jeong JH, Habibi HR, Kurrasch DM (2015) Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proc Natl Acad Sci USA 112(5):1475–1480

    Article  CAS  PubMed  Google Scholar 

  • Li DK, Zhou ZJ, Miao MH, He YH, Wang JT, Ferber J, Herrinton LJ, Gao ES, Yuan W (2011) Urine bisphenol-A (BPA) level in relation to semen quality. Fertil Steril 95(2):625–630

    Article  CAS  PubMed  Google Scholar 

  • Liang S, Yin N, Faiola F (2019) Human pluripotent stem cells as tools for predicting developmental neural toxicity of chemicals: strategies, applications and challenges. Stem Cells Dev. https://doi.org/10.1089/scd.2019.0007

    Article  PubMed  Google Scholar 

  • Liao CY, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K (2012) Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol 46(16):9138–9145

    Article  CAS  PubMed  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623

    Article  CAS  PubMed  Google Scholar 

  • Macauley MS, Whitworth GE, Debowski AW, Chin D, Vocadlo DJ (2005) O-GlcNAcase uses substrate-assisted catalysis—kinetic analysis and development of highly selective mechanism-inspired inhibitors. J Biol Chem 280(27):25313–25322

    Article  CAS  PubMed  Google Scholar 

  • Melzer D, Gates P, Osborn NJ, Henley WE, Cipelli R, Young A, Money C, McCormack P, Schofield P, Mosedale D, Grainger D, Galloway TS (2012a) Urinary bisphenol A concentration and angiography-defined coronary artery stenosis. PLOS One 7(8):e43378. https://doi.org/10.1371/journal.pone.0043378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer D, Osborne NJ, Henley WE, Cipelli R, Young A, Money C, McCormack P, Luben R, Khaw KT, Wareham NJ, Galloway TS (2012b) Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 125(12):1482–1490

    Article  CAS  PubMed  Google Scholar 

  • Nanou E, Catterall WA (2018) Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98(3):466–481

    Article  CAS  PubMed  Google Scholar 

  • Negri-Cesi P (2015) Bisphenol A interaction with brain development and functions. Dose Response. https://doi.org/10.1177/1559325815590394

    Article  PubMed  PubMed Central  Google Scholar 

  • Olivier-Van Stichelen S, Wang P, Comly M, Love DC, Hanover JA (2017) Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. J Biol Chem 292(15):6076–6085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao FV, Dorfmueller HC, Villa F, Allwood M, Eggleston IM, van Aalten DMF (2006) Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J 25(7):1569–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24(2):199–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risso G, Blaustein M, Pozzi B, Mammi P, Srebrow A (2015) Akt/PKB: one kinase, many modifications. Biochem J 468(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42(1):132–155

    Article  CAS  PubMed  Google Scholar 

  • Rochester JR, Bolden AL (2015) Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123(7):643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodney T, Osier N, Gill J (2018) Pro- and anti-inflammatory biomarkers and traumatic brain injury outcomes: a review. Cytokine 110:248–256

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld CS (2017) Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 47:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar A, Teppala S (2011) Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metab 96(12):3822–3826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar A, Teppala S, Sabanayagam C (2012) Urinary bisphenol A levels and measures of obesity: results from the national health and nutrition examination survey 2003–2008. ISRN endocrinol 2012:965243

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Tsutsumi O (2002) Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun 291(1):76–78

    Article  CAS  PubMed  Google Scholar 

  • The European Commission (2011) Commission directive 2011/8/EU of 28 January 2011 amending directive 2002/72/EC as regards the restriction of use of bisphenol A in plastic infant feeding bottles. Off J Eur Union L26:11–14

    Google Scholar 

  • Vaidyanathan K, Durning S, Wells L (2014) Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 49(2):140–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bu BT, Xie MJ, Zhang M, Yu ZY, Tao DD (2009) Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 89(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme JT, Rissman EF, Connelly JJ (2011) The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 59(3):296–305

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Herrup K (2007) Cell division in the CNS: protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta Mol Basis Dis 1772(4):457–466

    Article  CAS  Google Scholar 

  • Yang YR, Song M, Lee H, Jeon Y, Choi EJ, Jang HJ, Moon HY, Byun HY, Kim EK, Kim DH, Lee MN, Koh A, Ghim J, Choi JH, Lee-Kwon W, Kim KT, Ryu SH, Suh PG (2012) O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell 11(3):439–448

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Gu YX, Wan B, Ren XM, Guo LH (2017a) Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation. Biosens Bioelectron 95(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Yang YR, Song S, Hwang H, Jung JH, Kim SJ, Yoon S, Hur JH, Park JI, Lee C, Nam D, Seo YK, Kim JH, Rhim H, Suh PG (2017b) Memory and synaptic plasticity are impaired by dysregulated hippocampal O-GlcNAcylation. Sci Rep 7:44921. https://doi.org/10.1038/srep44921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JY, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809

    Article  CAS  PubMed  Google Scholar 

  • Yuzwa SA, Vocadlo DJ (2014) O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem Soc Rev 43(19):6839–6858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 21377142, 21577163, 21477146, 21621064, 91543203) and Chinese Academy of Sciences (XDB14040100, QYZDJ-SSW-DQC020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yang.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, YX., Liang, XX., Yin, NY. et al. New insights into mechanism of bisphenol analogue neurotoxicity: implications of inhibition of O-GlcNAcase activity in PC12 cells. Arch Toxicol 93, 2661–2671 (2019). https://doi.org/10.1007/s00204-019-02525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-019-02525-3

Keywords

Navigation