Skip to main content
Log in

Subchronic inhalation exposure to 2-ethyl-1-hexanol impairs the mouse olfactory bulb via injury and subsequent repair of the nasal olfactory epithelium

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The olfactory system can be a toxicological target of volatile organic compounds present in indoor air. Recently, 2-ethyl-1-hexanol (2E1H) emitted from adhesives and carpeting materials has been postulated to cause “sick building syndrome.” Patients’ symptoms are associated with an increased sense of smell. This investigation aimed to characterize the histopathological changes of the olfactory epithelium (OE) of the nasal cavity and the olfactory bulb (OB) in the brain, due to subchronic exposure to 2E1H. Male ICR mice were exposed to 0, 20, 60, or 150 ppm 2E1H for 8 h every day for 1 week, or 5 days per week for 1 or 3 months. After a 1-week exposure, the OE showed inflammation and degeneration, with a significant concentration-dependent reduction in the staining of olfactory receptor neurons and in the numbers of globose basal cells at ≥20 ppm. Regeneration occurred at 1 month along with an increase in the basal cells, but lymphocytic infiltration, expanded Bowman’s glands, and a decrease in the olfactory receptor neurons were observed at 3 months. Intriguingly, the OB at 3 months showed a reduction in the diameters of the glomeruli and in the number of olfactory nerves and tyrosine hydroxylase-positive neurons, but an increased number of ionized calcium-binding adaptor molecule 1-positive microglia in glomeruli. Accordingly, 2E1H inhalation induced degeneration of the OE with the lowest-observed-adverse-effect level of 20 ppm. The altered number of functional cell components in the OB suggests that effects on olfactory sensation persist after subchronic exposure to 2E1H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457. doi:10.1002/cne.901370404

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Uppal V, Pathak D (2011) Toxic effect of formaldehyde on the respiratory organs of rabbits: a light and electron microscopic study. Toxicol Ind Health 27(6):563–569. doi:10.1177/0748233710393398

    Article  CAS  PubMed  Google Scholar 

  • Brüning T, Bartsch R, Bolt HM et al (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88(10):1855–1879. doi:10.1007/s00204-014-1346-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Chino S, Kato S, Seo J, Kim J (2013) Measurement of 2-ethyl-1-hexanol emitted from flooring materials and adhesives. J Adhes Sci Technol 27(5–6):659–670

    Article  CAS  Google Scholar 

  • Cruzan G, Cushman JR, Andrews LS et al (2001) Chronic toxicity/oncogenicity study of styrene in CD-1 mice by inhalation exposure for 104 weeks. J Appl Toxicol 21(3):185–198

    Article  CAS  PubMed  Google Scholar 

  • Ernstgård L, Norbäck D, Nordquist T, Wieslander G, Wålinder R, Johanson G (2010) Acute effects of exposure to 1 mg/m(3) of vaporized 2-ethyl-1-hexanol in humans. Indoor Air 20(2):168–175. doi:10.1111/j.1600-0668.2009.00638.x

    Article  PubMed  Google Scholar 

  • Frederick CB, Udinsky JR, Finch L (1994) The regional hydrolysis of ethyl acrylate to acrylic acid in the rat nasal cavity. Toxicol Lett 70(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Gobba F (2006) Olfactory toxicity: long-term effects of occupational exposures. Int Arch Occup Environ Health 79(4):322–331. doi:10.1007/s00420-005-0043-x

    Article  CAS  PubMed  Google Scholar 

  • Harkema J, Carey S, Wagner JG (2006) The nose revised: a brief review of the comparative structure function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 34:252–269

    Article  CAS  PubMed  Google Scholar 

  • Haschek W, Rousseaux C, Wallig M (2010) Fundamentals of toxicologic pathology, 2nd edn. Academic press, London, Burlington, MA, San Diego, CA

  • Hayashi H, Kunugita N, Arashidani K, Fujimaki H, Ichikawa M (2004) Long-term exposure to low levels of formaldehyde increases the number of tyrosine hydroxylase-immunopositive periglomerular cells in mouse main olfactory bulb. Brain Res 1007(1–2):192–197. doi:10.1016/j.brainres.2003.12.052

    Article  CAS  PubMed  Google Scholar 

  • Jacquot L, Pourie G, Buron G, Monnin J, Brand G (2006) Effects of toluene inhalation exposure on olfactory functioning: behavioral and histological assessment. Toxicol Lett 165(1):57–65. doi:10.1016/j.toxlet.2006.01.018

    Article  CAS  PubMed  Google Scholar 

  • Kamijima M, Sakai K, Shibata E et al (2002) 2-Ethyl-1-hexanol in indoor air as a possible cause of sick building symptoms. J Occup Health 44:186–191

    Article  Google Scholar 

  • Kamijima M, Shibata E, Sakai K et al (2005) Indoor air pollution due to 2-ethyl-1-hexanol airborne concentrations, emission sources and subjective symptoms in classroom users. Jpn J Public Health 52(12):1021–1031

    CAS  Google Scholar 

  • Kaneko N, Marin O, Koike M et al (2010) New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67(2):213–223. doi:10.1016/j.neuron.2010.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiesswetter E, Thriel C, Schäper M, Blaszkewicz M, Seeber A (2005) Eye blinks as indicator for sensory irritation during constant and peak exposures to 2-ethylhexanol. Environ Toxicol Pharmacol 19(3):531–541. doi:10.1016/j.etap.2004.12.056

    Article  CAS  PubMed  Google Scholar 

  • Lapinskas PJ, Brown S, Leesnitzer LM, Blanchard S, Swanson C, Cattley RC, Corton JC (2005) Role of PPARalpha in mediating the effects of phthalates and metabolites in the liver. Toxicology 207(1):149–163

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189

    Article  CAS  PubMed  Google Scholar 

  • Min YG, Kim JW, Hong SC, Dhong HJ, Jarin PR, Jin Y (2003) Pathogenetic mechanism of olfactory cell injury after exposure to sulfur dioxide in mice. Laryngoscope 113:2157–2162

    Article  CAS  PubMed  Google Scholar 

  • Morgan KT, Monticello TM (1990) Airflow, gas deposition, and lesion distribution in the nasal passages. Environ Health Perspect 85:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norback D, Wieslander G, Nordstrom K, Walinder R (2000) Asthma symptoms in relation to measured building dampness in upper concrete floor construction, and 2-ethyl-1-hexanol in indoor air. Int J Tuberc Lung Dis 4(11):1016–1025

    CAS  PubMed  Google Scholar 

  • NTP (1990) National toxicology program toxicology and carcinogenesis studies of toluene (CAS No.108-88-3) in F344/N Rats and B6C3F1 Mice (Inhalation Studies). Natl Toxicol Program Techn Rep Ser 371:1–253

    Google Scholar 

  • Patterson R, Pateras V, Grammer LC, Harris KE (1986) Human antibodies against formaldehyde-human serum albumin conjugates or human serum albumin in individuals exposed to formaldehyde. Int Arch Allergy Appl Immunol 79(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Peng PH (1992) Degeneration and regeneration of olfacory epithelial neurons after olfactory nerve sectioning. Zhonghua Er Bi Yan Hou Ke Za Zhi 27(4):225–227 (in Chinese)

    CAS  PubMed  Google Scholar 

  • Putus T, Tuomainen A, Rautiala S (2004) Chemical and microbial exposures in a school building: adverse health effects in children. Arch Environ Health 59(4):194–201. doi:10.3200/AEOH.59.4.194-201

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Kamijima M, Shibata E, Ohno H, Nakajima T (2006) Indoor air pollution by 2-ethyl-1-hexanol in non-domestic buildings in Nagoya, Japan. J Environ Monit 8(11):1122–1128. doi:10.1039/b610981k

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Kamijima M, Shibata E, Ohno H, Nakajima T (2009) Annual transition and seasonal variation of indoor air pollution levels of 2-ethyl-1-hexanol in large-scale buildings in Nagoya, Japan. J Environ Monit 11(11):2068–2076. doi:10.1039/b910558a

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Ishidao T, Kunugida N et al (2006) The effect of 2-ethyl-hexanol inhalation on morphological examination in mice. Sangyo Eiseigaku Zasshi 48(Suppl):542

    Google Scholar 

  • Sawada M, Kaneko N, Inada H et al (2011) Sensory input regulates spatial and subtype-specific patterns of neuronal turnover in the adult olfactory bulb. J Neurosci 31(32):11587–11596. doi:10.1523/JNEUROSCI.0614-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632. doi:10.1126/science.1119133

    Article  CAS  PubMed  Google Scholar 

  • Scala RA, Burtis EG (1973) Acute toxicity of a homologous series of branched-chain primary alcohols. Am Ind Hyg Assoc J 34(11):493–499. doi:10.1080/0002889738506887

    Article  CAS  PubMed  Google Scholar 

  • Schwob JE, Youngentob SL, Mezza RC (1995) Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol 359(1):15–37. doi:10.1002/cne.903590103

    Article  CAS  PubMed  Google Scholar 

  • Seubert J, Freiherr J, Frasnelli J, Hummel T, Lundstrom JN (2013) Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex 23(10):2448–2456. doi:10.1093/cercor/bhs230

    Article  PubMed  Google Scholar 

  • Smyth HF Jr, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS (1969) Range-finding toxicity data: list VII. Am Ind Hyg Assoc J 30(5):470–476. doi:10.1080/00028896909343157

    Article  CAS  PubMed  Google Scholar 

  • Tomoto T, Moriyoshi A, Sakai K, Shibata E, Kamijima M (2009) Identification of the sources of organic compounds that decalcify cement concrete and generate alcohols and ammonia gases. Build Environ 44:2000–2005

    Article  Google Scholar 

  • van Thriel C, Kiesswetter E, Schäper M et al (2007) From neurotoxic to chemosensory effects: new insights on acute solvent neurotoxicity exemplified by acute effects of 2-ethylhexanol. Neurotoxicology 28(2):347–355. doi:10.1016/j.neuro.2006.03.008

    Article  PubMed  Google Scholar 

  • Wieslander G, Norback D, Nordstrom K, Walinder R, Venge P (1999) Nasal and ocular symptoms, tear film stability and biomarkers in nasal lavage, in relation to building-dampness and building design in hospitals. Int Arch Occup Environ Health 72(7):451–461

    Article  CAS  PubMed  Google Scholar 

  • Wieslander G, Kumlin A, Norback D (2010) Dampness and 2-ethyl-1-hexanol in floor construction of rehabilitation center: health effects in staff. Arch Environ Occup Health 65(1):3–11. doi:10.1080/19338240903390248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a Grant-in-Aid for Scientific Research (24590752) from the Japan Ministry of Education, Culture, Sports, Science, and Technology, and a grant provided by The Uehara Memorial Foundation in 2009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuki Ito or Michihiro Kamijima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figure

Mouse respiratory epithelium after exposure to 0 (CON) and 150 (HIGH) ppm 2E1H for 1 week (1 W), 1 month (1 M), and 3 months (3 M). Typical photographs in each group are given here. No toxic changes were observed in the respiratory epithelium. Scale bar indicates 50 µm. (TIFF 34074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyake, M., Ito, Y., Sawada, M. et al. Subchronic inhalation exposure to 2-ethyl-1-hexanol impairs the mouse olfactory bulb via injury and subsequent repair of the nasal olfactory epithelium. Arch Toxicol 90, 1949–1958 (2016). https://doi.org/10.1007/s00204-016-1699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1699-6

Keywords

Navigation