Skip to main content

Advertisement

Log in

Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Microcystin-LR (MCLR), a cyanotoxin widely present in freshwater, has been shown to have potent acute hepatotoxicity. However, the chronic toxicity of low-dose MCLR remains confusing by traditional measurements of toxicity. This has impeded understanding of the chronic liver damage of low-dose MCLR and corresponding safety risks of the human exposure guideline value. Here, iTRAQ-based proteomics and NMR-based metabonomics were used to decipher the molecular toxicological signatures of low doses of MCLR in mice exposed to this agent for 90 days. Low levels of MCLR, even under the reported no observed adverse effect level, significantly altered hepatic protein expression, especially of proteins associated with lipid metabolism, transport, immune and proteolysis. Coherently, MCLR induced marked perturbations in lipid metabolites in both liver and serum. Integrated analysis of proteomic, metabolic, histological and cytokine profiles revealed that MCLR significantly inhibited fatty acid β-oxidation and hepatic lipoprotein secretion and promoted hepatic inflammation, resulting in nonalcoholic steatohepatitis disease (NASH). These findings for the first time provide compelling evidence that chronic exposure to low-level MCLR can induce NASH. These results also indicate that current guidelines for MCs in drinking water may be inadequate and associated with risks to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Shanab A, Quigley EMM (2010) The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7:691–701

    Article  PubMed  Google Scholar 

  • Baffy G, Brunt EM, Caldwell SH (2012) Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 56:1384–1391

    Article  PubMed  Google Scholar 

  • Begriche K, Massart J, Robin M-A, Borgne-Sanchez A, Fromenty B (2011) Drug-induced toxicity on mitochondria and lipid metabolism: mechanistic diversity and deleterious consequences for the liver. J Hepatol 54:773–794

    Article  CAS  PubMed  Google Scholar 

  • Buchman AL, Dubin MD, Moukarzel AA, Jenden DJ, Roch M, Rice KM, Gornbein J, Ament ME (1995) Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatology 22:1399–1403

    CAS  PubMed  Google Scholar 

  • Cave M, Falkner KC, Ray M, Joshi-Barve S, Brock G, Khan R, Bon Homme M, McClain CJ (2010) Toxicant-associated steatohepatitis in vinyl chloride workers. Hepatology 51:474–481. doi:10.1002/hep.23321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Xie P, Li L, Xu J (2009) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci 108:81–89

    Article  CAS  PubMed  Google Scholar 

  • Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ (2008) Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48:1810–1820. doi:10.1002/hep.22569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights. Science 332:1519–1523. doi:10.1126/science.1204265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai M, Xie P, Liang G, Chen J, Lei H (2008) Simultaneous determination of microcystin-LR and its glutathione conjugate in fish tissues by liquid chromatography-tandem mass spectrometry. J Chromatogr B 862:43–50

    Article  CAS  Google Scholar 

  • Diehl AM, Li ZP, Lin HZ, Yang SQ (2005) Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut 54:303–306. doi:10.1136/gut.2003.024935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W-X, Nam Ong C (2003) Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett 220:1–7. doi:10.1016/s0378-1097(03)00100-9

    Article  PubMed  Google Scholar 

  • Dumas M-E, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Nat Acad Sci 103:12511–12516. doi:10.1073/pnas.0601056103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer I, Humpage A (2005) Health risk assessment of cyanobacterial (blue–green algal) toxins in drinking water. Int J Env Res Public Health 2:43–50

    Article  CAS  Google Scholar 

  • Falconer IR, Beresford AM, Runnegar MT (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med J Aust 1:511–514

    CAS  PubMed  Google Scholar 

  • Fawell JK, James C, James H (1994) Toxins from blue-green algae: toxicological assessment of microcystin-LR and a method for its determination in water. Water research centre, Medmenham, UK, pp 1–46

  • Fawell JK, Mitchell RE, Everett DJ, Hill RE (1999) The toxicity of cyanobacterial toxins in the mouse: I Microcystin-LR. Hum Exp Toxicol 18:162–167. doi:10.1177/096032719901800305

    Article  CAS  PubMed  Google Scholar 

  • Fullerton MD, Hakimuddin F, Bakovic M (2007) Developmental and metabolic effects of disruption of the mouse CTP: phosphoethanolamine cytidylyltransferase gene (Pcyt2). Mol Cell Biol 27:3327–3336. doi:10.1128/mcb.01527-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuiper-Goodman T, Falconer IR, FItzgerald J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E&FN Spon, London, pp 113–153

    Google Scholar 

  • Lapaque N, Takeuchi O, Corrales F, Akira S, Moriyon I, Howard JC, Gorvel JP (2006) Differential inductions of TNF-α and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cell Microbiol 8:401–413

    Article  CAS  PubMed  Google Scholar 

  • Li Y, J-a Chen, Zhao Q, Pu C, Qiu Z, Zhang R, Shu W (2011) A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the three gorges reservoir region, China. Environ Health Perspect 119:1483–1488. doi:10.1289/ehp.1002412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Cai F, Yan W, Li C, Wang J (2012) A proteomic analysis of MCLR-induced neurotoxicity: implications for Alzheimer’s disease. Toxicol Sci 127:485–495

    Article  CAS  PubMed  Google Scholar 

  • Lim JS, Mietus-Snyder M, Valente A, Schwarz J-M, Lustig RH (2010) The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol 7:251–264

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Liu L, Zhang Y, Song T, Lu J, Chen X (2010) Ingenuity pathways analysis of urine metabonomics phenotypes toxicity of gentamicin in multiple organs. Mol BioSyst 6:2056–2067

    Article  CAS  PubMed  Google Scholar 

  • Malatesta M, Caporaloni C, Rossi L, Battistelli S, Rocchi MBL, Tonucci F, Gazzanelli G (2002) Ultrastructural analysis of pancreatic acinar cells from mice fed on genetically modified soybean. J Anat 201:409–415. doi:10.1046/j.0021-8782.2002.00103.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  PubMed  Google Scholar 

  • Matsubara T, Tanaka N, Krausz Kristopher W, Manna Soumen K, Kang Dong W, Anderson Erik R, Luecke H, Patterson Andrew D, Shah Yatrik M, Gonzalez Frank J (2012) Metabolomics identifies an inflammatory cascade involved in dioxin- and diet-induced steatohepatitis. Cell Metabol 16:634–644. doi:10.1016/j.cmet.2012.10.006

    Article  CAS  Google Scholar 

  • Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118:420–424

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Huisman J (2008) Climate—blooms like it hot. Science 320:57–58. doi:10.1126/science.1155398

    Article  CAS  PubMed  Google Scholar 

  • Pessayre D, Mansouri A, Haouzi D, Fromenty B (1999) Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol 15:367–373

    Article  CAS  PubMed  Google Scholar 

  • Prows D, Murphy E, Schroeder F (1995) Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cells. Lipids 30:907–910. doi:10.1007/bf02537481

    Article  CAS  PubMed  Google Scholar 

  • Ray SD, Jena N (2000) A hepatotoxic dose of acetaminophen modulates expression of BCL-2, BCL-XL, and BCL-XS during apoptotic and necrotic death of mouse liver cells in vivo. Arch Toxicol 73:594–606

    Article  CAS  PubMed  Google Scholar 

  • Rocha MFG, Sidrim JJC, Soares AM, Jimenez GC, Guerrant RL, Ribeiro RA, Lima AAM (2000) Supernatants from macrophages stimulated with microcystin-LR induce electrogenic intestinal response in rabbit ileum. Pharmacol Toxicol 87:46–51. doi:10.1111/j.0901-9928.2000.870108.x

    Article  CAS  PubMed  Google Scholar 

  • Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S (2013) Environmental toxin linked nonalcoholic steatohepatitis and hepatic metabolic reprogramming in obese mice. Toxicol Sci 134:291–303. doi:10.1093/toxsci/kft104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Wahlang B, Wei X, Yin X, Falkner KC, Prough RA, Kim SH, Mueller EG, McClain CJ, Cave M, Zhang X (2012) Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease. J Proteome Res 11:3805–3815. doi:10.1021/pr300297z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SvirČEv Z, KrstiČ S, Miladinov-Mikov M, BaltiČ V, VidoviČ M (2009) Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health Part C 27:36–55. doi:10.1080/10590500802668016

    Article  Google Scholar 

  • Tan F, Jin Y, Liu W, Quan X, Chen J, Liang Z (2012) Global liver proteome analysis using iTRAQ labeling quantitative proteomic technology to reveal biomarkers in mice exposed to perfluorooctane sulfonate (PFOS). Environ Sci Technol 46:12170–12177. doi:10.1021/es3027715

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park H-D, Chen G-C, Chen G, Yu S-Z (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, S-i Tamura, Ueno Y (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat Toxins 5:91–95. doi:10.1002/1522-7189(1997)5:3<91:aid-nt1>3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xie P, Fan H (2011) Genomic profiling of microRNAs and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice. Environ Sci Technol 46:34–41

    Article  PubMed  Google Scholar 

  • Zhao Y, Xie P, Fan H, Zhao S (2014) Impairment of the mitochondrial oxidative phosphorylation system and oxidative stress in liver of crucian carp (Carassius auratus L.) exposed to microcystins. Environ Toxicol 29:30–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant No. 31322013) and State Key Laboratory of Freshwater Ecology and Biotechnology (Grant No. 2014FBZ02). The authors thank the Wuhan Institute of Physics and Mathematics, Chinese Academy of Science, for the use of their Bruker NMR spectrometers. The authors thank Hongbing Liu and Sizhe Chen for help with the NMR experiment and data processing. The authors also thank Shangchun Li, Wei Li, Xiaochun Guo, Huihui Fan, Dezhao Yu, Lijuan Xie and Sujuan Zhao for assistance with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xie.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Jun He, Jun Chen and Guangyu Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Li, G., Chen, J. et al. Prolonged exposure to low-dose microcystin induces nonalcoholic steatohepatitis in mice: a systems toxicology study. Arch Toxicol 91, 465–480 (2017). https://doi.org/10.1007/s00204-016-1681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1681-3

Keywords

Navigation