Skip to main content

Advertisement

Log in

Ketoconazole induces apoptosis in rat cardiomyocytes through reactive oxygen species-mediated parkin overexpression

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Azole antifungals such as ketoconazole are generally known to induce a variety of heart function side effects, e.g., long-QT syndrome and ventricular arrhythmias. However, a clear mechanism for the action of ketoconazole in heart cells has not been reported. In the present study, we assessed the correlation between ketoconazole-induced apoptosis and the alteration of genes in response to ketoconazole in rat cardiomyocytes. Cardiomyocyte viability was significantly inhibited by treatment with ketoconazole. Ketoconazole also stimulated H2O2 generation and TUNEL-positive apoptosis in a dose-dependent manner. DNA microarray technology revealed that 10,571 genes were differentially expressed by more than threefold in ketoconazole-exposed cardiomyocytes compared with untreated controls. Among these genes, parkin, which encodes a component of the multiprotein E3 ubiquitin ligase complex, was predominantly overexpressed among those classified as apoptosis- and reactive oxygen species (ROS)-related genes. The expression of parkin was also elevated in cardiomyocytes treated with exogenous H2O2. Moreover, cell viability and apoptosis in response to ketoconazole were inhibited in cardiomyocytes treated with ROS inhibitors and transfected with parkin siRNA. From the present findings, we concluded that ketoconazole may increase the expression of parkin via the ROS-mediated pathway, which consequently results in the apoptosis and decreased viability of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn SY, Kim Y, Kim ST, Swat W, Miner JH (2013) Scaffolding proteins DLG1 and CASK cooperate to maintain the nephron progenitor population during kidney development. J Am Soc Nephrol 24:1127–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Borgers M (1980) Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev Infect Dis 2:520–534

    Article  CAS  PubMed  Google Scholar 

  • Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, Giroir B (1998) Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-β. Circulation 97:1375–1381

    Article  CAS  PubMed  Google Scholar 

  • Carroll RG, Hollville E, Martin SJ (2014) Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep 9:1538–1553

    Article  CAS  PubMed  Google Scholar 

  • Dumaine R, Roy ML, Brown AM (1998) Blockade of HERG and Kv1.5 by ketoconazole. J Pharmacol Exp Ther 286:727–735

    CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM (2004) Apoptosis signaling in tumor therapy. Ann N Y Acad Sci 1028:150–156

    Article  CAS  PubMed  Google Scholar 

  • Gaborit N, Le Bouter S, Szuts V, Varro A, Escande D, Nattel S, Demolombe S (2007) Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. J Physiol 582:675–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ha JY, Kim JS, Kim SE, Son JH (2014) Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death. Neurosci Lett 561:101–106

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Furusawa C, Shimizu H (2010) Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl Microbiol Biotechnol 87:391–400

    Article  CAS  PubMed  Google Scholar 

  • Hsueh YP (2006) The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem 13:1915–1927

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754

    Article  CAS  PubMed  Google Scholar 

  • Johnson BN, Berger AK, Cortese GP, Lavoie MJ (2012) The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci USA 109:6283–6288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM (2014) Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J 460:127–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  • Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN, Gustafsson AB (2013) Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288:915–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-α. Circ Res 81:627–635

    Article  CAS  PubMed  Google Scholar 

  • Kwon DN, Chang BS, Kim JH (2014) Gene expression and pathway analysis of effects of the CMAH deactivation on mouse lung, kidney and heart. PLoS One 9:e107559

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548

    Article  PubMed  Google Scholar 

  • Lee CK, Kim HJ, Lee YR, So HH, Park HJ, Won KJ, Park T, Lee KY, Lee HM, Kim B (2007) Analysis of peroxiredoxin decreasing oxidative stress in hypertensive aortic smooth muscle. Biochim Biophys Acta 1774:848–855

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Lee MH, Kang YW, Rhee KJ, Kim TU, Kim YS (2012a) Parkin induces apoptotic cell death in TNF-α-treated cervical cancer cells. BMB Rep 45:526–531

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Lee HY, Gustafsson AB (2012b) Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol 60:118–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li PF, Dietz R, von Harsdorf R (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-β1 in cardiac fibroblasts. FEBS Lett 448:206–210

    Article  CAS  PubMed  Google Scholar 

  • Lou H, Kaur K, Sharma AK, Singal PK (2006) Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology 13:103–109

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810

    Article  CAS  PubMed  Google Scholar 

  • Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lämmermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer KF (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem 284:22938–22951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omura T, Kaneko M, Okuma Y, Orba Y, Nagashima K, Takahashi R, Fujitani N, Matsumura S, Hata A, Kubota K, Murahashi K, Uehara T, Nomura Y (2006) A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin. J Neurochem 99:1456–1469

    Article  CAS  PubMed  Google Scholar 

  • Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A, Cuvillier O (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pulkki KJ (1997) Cytokines and cardiomyocyte death. Ann Med 29:339–343

    Article  CAS  PubMed  Google Scholar 

  • Rajan S, Pena JR, Jegga AG, Aronow BJ, Wolska BM, Wieczorek DF (2013) Microarray analysis of active cardiac remodeling genes in a familial hypertrophic cardiomyopathy mouse model rescued by a phospholamban knockout. Physiol Genomics 45:764–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  CAS  PubMed  Google Scholar 

  • Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA (2003) Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol 284:C562–C570

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Dewald O, Adrogue J, Salazar RL, Razeghi P, Crapo JD, Bowler RP, Entman ML, Taegtmeyer H (2006) Induction of antioxidant gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species. Free Radic Biol Med 40:2223–2231

    Article  CAS  PubMed  Google Scholar 

  • Snell SB, Foster TH, Haidaris CG (2012) Miconazole induces fungistasis and increases killing of Candida albicans subjected to photodynamic therapy. Photochem Photobiol 88:596–603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF, White RT (2000) Altered patterns of gene expression in response to myocardial infarction. Circ Res 86:939–945

    Article  CAS  PubMed  Google Scholar 

  • Steenman M, Chen YW, Le Cunff M, Lamirault G, Varró A, Hoffman E, Léger JJ (2003) Transcriptomal analysis of failing and nonfailing human hearts. Physiol Genomics 12:97–112

    Article  CAS  PubMed  Google Scholar 

  • Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T (1994) p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78:703–711

    Article  CAS  PubMed  Google Scholar 

  • Szuts V, Ménesi D, Varga-Orvos Z, Zvara Á, Houshmand N, Bitay M, Bogáts G, Virág L, Baczkó I, Szalontai B, Geramipoor A, Cotella D, Wettwer E, Ravens U, Deák F, Puskás LG, Papp JG, Kiss I, Varró A, Jost N (2013) Altered expression of genes for Kir ion channels in dilated cardiomyopathy. Can J Physiol Pharmacol 91:648–656

    Article  CAS  PubMed  Google Scholar 

  • Tonini M, De Ponti F, Di Nucci A, Crema F (1999) Cardiac adverse effects of gastrointestinal prokinetics. Aliment Pharmacol Ther 13:1585–1591

    Article  CAS  PubMed  Google Scholar 

  • Van den Bossche H, Willemsens G, Cools W, Cornelissen F, Lauwers WF, van Cutsem JM (1980) In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob Agents Chemother 17:922–928

    Article  PubMed Central  PubMed  Google Scholar 

  • von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Article  Google Scholar 

  • Won KJ, Lin HY, Jung S, Cho SM, Shin HC, Bae YM, Lee SH, Kim HJ, Jeon BH, Kim B (2012) Antifungal miconazole induces cardiotoxicity via inhibition of APE/Ref-1-related pathway in rat neonatal cardiomyocytes. Toxicol Sci 126:298–305

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H, Mizusawa H (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312:1342–1348

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Chen Y, Pat B, Dell’italia LA, Tillson M, Dillon AR, Powell PC, Shi K, Shah N, Denney T, Husain A, Dell’Italia LJ (2009) Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation 119:2086–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant (08172KFDA508) from Korea Food & Drug Administration in 2008 and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF 2010-0013344).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bokyung Kim.

Additional information

Kyung Jong Won and Kang Pa Lee have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, K.J., Lee, K.P., Yu, S. et al. Ketoconazole induces apoptosis in rat cardiomyocytes through reactive oxygen species-mediated parkin overexpression. Arch Toxicol 89, 1871–1880 (2015). https://doi.org/10.1007/s00204-015-1502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1502-0

Keywords

Navigation