Skip to main content
Log in

Mitochondrial functional impairment in response to environmental toxins in the cardiorenal metabolic syndrome

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Environmental toxins can promote cardiovascular, metabolic, and renal abnormalities, which characterize the cardiorenal metabolic syndrome (CRS). Heavy metals, such as mercury and arsenic, represent two of the most toxic pollutants. Exposure to these toxins is increasing due to increased industrialization throughout much of the world. Studies conducted to understand the impact of environmental toxins have shown a major impact on mitochondrial structure and function. The maladaptive stress products caused by these toxins, including aggregated proteins, damaged organelles, and intracellular pathogens, can be removed through autophagy, which is also known as mitophagy in mitochondria. Although the underlying mechanisms involved in the regulation of mitophagy in response to pollution are not well understood, accumulating evidence supports a role for maladaptive mitochondrial responses to environmental pollution in the pathogenesis of the CRS. In this review, we discuss the ongoing research, which explores the mechanisms by which these toxins promote abnormalities in mitophagy and associated mitochondrial dysfunction and the CRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aroor AR, Mandavia C, Ren J, Sowers JR, Pulakat L (2012) Mitochondria and oxidative stress in the cardiorenal metabolic syndrome. Cardiorenal Med 2:87–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR (2013) Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 62:1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Atchison WD, Hare MF (1994) Mechanisms of methylmercury-induced neurotoxicity. FASEB J 8:622–629

    CAS  PubMed  Google Scholar 

  • Bhatia-Kiššová I, Camougrand N (2010) Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res 10:1023–1034

    Article  PubMed  Google Scholar 

  • Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P (2014) The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal 26:549–555

    Article  CAS  PubMed  Google Scholar 

  • Bridges CC, Joshee L, Zalups RK (2014) Aging and the disposition and toxicity of mercury in rats. Exp Gerontol 53:31–39

    Article  CAS  PubMed  Google Scholar 

  • Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiarelli R, Roccheri MC (2012) Heavy metals and metalloids as autophagy inducing agents: focus on cadmium and arsenic. Cells 1:597–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colicino E, Power MC, Cox DG, Weisskopf MG, Hou L, Alexeeff SE, Sanchez-Guerra M, Vokonas P, Spiro A III, Schwartz J, Baccarelli AA (2014) Mitochondrial haplogroups modify the effect of black carbon on age-related cognitive impairment. Environ Health 13:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Demarco VG, Whaley-Connell AT, Sowers JR, Habibi J, Dellsperger KC (2010) Contribution of oxidative stress to pulmonary arterial hypertension. World J Cardiol 2:316–324

    Article  PubMed Central  PubMed  Google Scholar 

  • Devlin RB, Smith CB, Schmitt MT, Rappold AG, Hinderliter A, Graff D, Carraway MS (2014) Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol Sci 140:61–72

    Article  CAS  PubMed  Google Scholar 

  • Eom SY, Choi SH, Ahn SJ, Kim DK, Kim DW, Lim JA, Choi BS, Shin HJ, Yun SW, Yoon HJ, Kim YM, Hong YS, Yun YW, Sohn SJ, Kim H, Park KS, Pyo HS, Kim H, Oh SY, Kim J, Lee SA, Ha M, Kwon HJ, Park JD (2014) Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int Arch Occup Environ Health 87:501–513

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao L, Laude K, Cai H (2008) Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin N Am Small Anim Pract 38:137–155

    Article  Google Scholar 

  • Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60

    CAS  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  CAS  PubMed  Google Scholar 

  • Gul R, Demarco VG, Sowers JR, Whaley-Connell A, Pulakat L (2012) Regulation of overnutrition-induced cardiac inflammatory mechanisms. Cardiorenal Med 2:225–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Duckles SP, Weiss JH, Li X, Krause DN (2012) 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen–glucose deprivation/reperfusion. Free Radic Biol Med 52:2151–2160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han S, Lemire J, Appanna VP, Auger C, Castonguay Z, Appanna VD (2013) How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biol Toxicol 29:75–84

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson R, Rocic P (2012) The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: the great exploration. Exp Diabetes Res 2012:271028

    Article  PubMed Central  PubMed  Google Scholar 

  • Jia G, Sowers JR (2014) Autophagy: a housekeeper in cardiorenal metabolic health and disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2014.06.025

    Google Scholar 

  • Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J (2014) Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci 10:268–277

    Article  PubMed Central  PubMed  Google Scholar 

  • Jindal A, Whaley-Connell A, Brietzke S, Sowers JR (2013a) Therapy of obese patients with cardiovascular disease. Curr Opin Pharmacol 13:200–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jindal A, Whaley-Connell A, Sowers JR (2013b) Obesity and heart failure as a mediator of the cerebrorenal interaction. Contrib Nephrol 179:15–23

    Article  PubMed  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12(10):6894–6918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kilbride SM, Prehn JH (2013) Central roles of apoptotic proteins in mitochondrial function. Oncogene 32:2703–2711

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  CAS  PubMed  Google Scholar 

  • Longo G, Trovato M, Mazzei V, Ferrante M, Conti GO (2013) Ligia italica (Isopoda, Oniscidea) as bioindicator of mercury pollution of marine rocky coasts. PLoS One 8(3):e58548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma T, Zhu J, Chen X, Zha D, Singhal PC, Ding G (2013) High glucose induces autophagy in podocytes. Exp Cell Res 319:779–789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mei Y, Thompson MD, Cohen RA, Tong X (2013) Endoplasmic reticulum stress and related pathological processes. J Pharmacol Biomed Anal 1:1000107

    PubMed Central  PubMed  Google Scholar 

  • Miller S, Pallan S, Gangji AS, Lukic D, Clase CM (2013) Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. Am J Kidney Dis 62:135–138

    Article  PubMed  Google Scholar 

  • Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA (2011) Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51:584–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ouyang C, You J, Xie Z (2014) The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol 71:71–80

    Article  CAS  PubMed  Google Scholar 

  • Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83:84–92

    Article  CAS  PubMed  Google Scholar 

  • Ptak GE, Toschi P, Fidanza A, Czernik M, Zacchini F, Modlinski JA, Loi P (2014) Autophagy and apoptosis: parent-of-origin genome-dependent mechanisms of cellular self-destruction. Open Biol 4(6):140027. doi:10.1098/rsob.140027

    Article  PubMed Central  PubMed  Google Scholar 

  • Quan W, Jung HS, Lee MS (2013) Role of autophagy in the progression from obesity to diabetes and in the control of energy balance. Arch Pharm Res 36:223–229

    Article  CAS  PubMed  Google Scholar 

  • Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10:4032–4038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salabei JK, Conklin DJ (2013) Cardiovascular autophagy: crossroads of pathology, pharmacology and toxicology. Cardiovasc Toxicol 13:220–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833:3460–3470

    Article  CAS  PubMed  Google Scholar 

  • Shen GX (2012) Mitochondrial dysfunction, oxidative stress and diabetic cardiovascular disorders. Cardiovasc Hematol Disord Drug Targets 12:106–112

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivitz WI, Yorek MA (2010) Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal 12:537–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5

    Article  CAS  Google Scholar 

  • Sowers JR (2013) Diabetes mellitus and vascular disease. Hypertension 61:943–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sowers JR, Whaley-Connell A, Hayden MR (2011) The role of overweight and obesity in the cardiorenal syndrome. Cardiorenal Med 1:5–12

    Article  PubMed Central  PubMed  Google Scholar 

  • Spalding A, Kernan J, Lockette W (2009) The metabolic syndrome: a modern plague spread by modern technology. J Clin Hypertens (Greenwich) 11(12):755–760

    Article  Google Scholar 

  • Whaley-Connell A, McCullough PA, Sowers JR (2011) The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med 12:21–29

    PubMed  Google Scholar 

  • Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Harrison CM, Chuang GC, Ballinger SW (2007) The role of tobacco smoke induced mitochondrial damage in vascular dysfunction and atherosclerosis. Mutat Res 621:61–74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yi CH, Vakifahmetoglu-Norberg H, Yuan J (2011) Integration of apoptosis and metabolism. In: Cold Spring Harbor symposia on quantitative biology, vol 769, pp 375–387

  • Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Investig 117:1782–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brenda Hunter for her editorial assistance. This research was supported by NIH (R01 HL73101, R01 HL107910) and the Veterans Affairs Merit System (0018) for JRS, and NIH (R01 HL088105) for LAM.

Conflict of interest

The authors have no conflict of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Sowers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, G., Aroor, A.R., Martinez-Lemus, L.A. et al. Mitochondrial functional impairment in response to environmental toxins in the cardiorenal metabolic syndrome. Arch Toxicol 89, 147–153 (2015). https://doi.org/10.1007/s00204-014-1431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1431-3

Keywords

Navigation