Skip to main content

Advertisement

Log in

Roles of microRNA-1 in hypoxia-induced apoptotic insults to neuronal cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Hypoxia is a common occurrence in brain tumors and traumatic brain injury. microRNA (miR)-1 participates in the regulation of brain development and neuronal function. Interestingly, miR-1 can mediate ischemia-induced injury to cardiomyocytes. This study was designed to evaluate the roles of miR-1 in hypoxia-induced insults to neurons and the possible mechanisms. Exposure of neuro-2a cells to oxygen/glucose deprivation (OGD) or cobalt chloride decreased cell viability and induced cell apoptosis in time-dependent manners. In parallel, OGD caused augmentation of cellular Bax and cytochrome c levels, a reduction in the mitochondrial membrane potential (MMP), activation of caspase-3, and fragmentation of DNA. miR-1 was induced in neuro-2a cells by OGD. Knocking down miR-1 expression using specific antisense inhibitors significantly alleviated OGD-induced neuronal death. Administration of OGD to neuro-2a cells induced heat-shock protein (HSP)-70 messenger (m)RNA and protein expressions. A bioinformatic search revealed that miR-1-specific binding elements exist in the 3′-untranslated region of HSP-70 mRNA. Overexpression of miR-1 simultaneously attenuated OGD-induced HSP-70 mRNA and protein expressions. In comparison, knocking down miR-1 expression synergistically enhanced OGD-induced HSP-70 mRNA. As to the mechanism, reducing miR-1 expression lowered OGD-induced alterations in the MMP, caspase-3 activation, DNA fragmentation, and cell apoptosis. Taken together, this study shows that miR-1 can target HSP-70 expression and consequently mediate hypoxia-induced apoptotic insults to neuro-2a cells via an intrinsic Bax–mitochondrion–caspase protease pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe K, Kawagoe J, Aoki M, Kogure K (1993) Changes of mitochondrial DNA and heat shock protein gene expressions in gerbil hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 13:773–780

    Article  PubMed  CAS  Google Scholar 

  • Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J (2014) Releasing pressure in tumors: what do we know so far and where do we go from here? Cancer Res 74:2655–2662

    Article  PubMed  CAS  Google Scholar 

  • Axelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S (2005) Hypoxia-induced dedifferentiation of tumor cells-a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16:554–563

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chang HC, Chen TG, Tai YT, Chen TL, Chiu WT, Chen RM (2011) Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. J Cereb Blood Flow Metab 31:842–854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen RM, Lin YL, Chou CW (2010) GATA-3 transduces survival signals in osteoblasts through upregulation of bcl-x L gene expression. J Bone Miner Res 25:2193–2204

    Article  PubMed  CAS  Google Scholar 

  • Chesnut RM, Marshall LF, Klauber MR (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–322

    Article  PubMed  CAS  Google Scholar 

  • Chio CC, Lin JW, Cheng HA, Chiu WT, Wang YH, Wang JJ, Hsing CH, Chen RM (2013) MicroRNA-210 targets antiapoptotic Bcl-2 expression and mediates hypoxia-induced apoptosis of neuroblastoma cells. Arch Toxicol 87:458–468

    Article  Google Scholar 

  • Chuang CY, Chen TL, Cherng YG, Tai YT, Chen TG, Chen RM (2011) Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. Arch Toxicol 85:209–218

    Article  PubMed  CAS  Google Scholar 

  • Fatemi A, Wilson MA, Johnston MV (2009) Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol 36:835–838

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerstner ER, Duda DG, di Tomaso E, Ryg PA, Loeffler JS, Sorensen AG, Ivy P, Jain RK, Batchelor TT (2009) VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 6:229–236

    Article  PubMed  CAS  Google Scholar 

  • Goyal L (2001) Cell death inhibition: keeping caspases in check. Cell 104:805–808

    Article  PubMed  CAS  Google Scholar 

  • Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278:5–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jensen RL (2009) Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 92:317–335

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha R, Ferracin M, Wojcik S, Garzon R, Alder H, Agosto-Perez FJ, Davuluri R, Liu CG, Croce CM, Negrini M, Calin GA, Ivan M (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

  • Lee ST, Wu TT, Yu PY, Chen RM (2009) Apoptotic insults to human HepG2 cells induced by S-(+)-ketamine occurs through activation of a Bax-mitochondria-caspase protease pathway. Br J Anaesth 102:80–89

    Article  PubMed  CAS  Google Scholar 

  • Liao MH, Tai YT, Cherng YG, Liu SH, Chang YA, Lin PI, Chen RM (2014) Genistein induces estrogen receptor-α gene expression in osteoblasts through activation of MAPKs/NF-κB/AP-1 and promotes cell mineralization. Br J Nutr 111:55–63

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Chang HC, Chen TL, Chang JH, Chiu WT, Chen RM (2010) Resveratrol protects against oxidized LDL-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutr 140:2187–2192

    Article  PubMed  CAS  Google Scholar 

  • Lin JW, Chen JT, Hong CY, Lin YL, Wang KT, Yao CJ, Lai GM, Chen RM (2012) Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic Bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro-Oncology 14:302–314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lingsma HF, Roozenbeek B, Steyerberg EW, Murray GD, Maas AI (2010) Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol 9:543–554

    Article  PubMed  Google Scholar 

  • Mazzeo AT, Bullock R (2007) Monitoring brain tissue oximetry: will it change management of critically ill neurologic patients? J Neurol Sci 261:1–9

    Article  PubMed  Google Scholar 

  • Murphy ME (2013) The HSP70 family and cancer. Carcinogenesis 34:1181–1188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Negrini M, Nicoloso MS, Calin GA (2009) MicroRNAs and cancer–new paradigms in molecular oncology. Curr Opin Cell Biol 21:470–479

    Article  PubMed  CAS  Google Scholar 

  • Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9:1059–1096

    Article  PubMed  CAS  Google Scholar 

  • Pagliari LJ, Kuwana T, Bonzon C, Newmeyer DD, Tu S, Beere HM, Green DR (2005) The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc Natl Acad Sci USA 102:17975–17980

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Patterson AJ, Zhang L (2010) Hypoxia and fetal heart development. Curr Mol Med 10:653–666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qi W, White MC, Choi W, Guo C, Dinney C, McConkey DJ, Siefker-Radtke A (2013) Inhibition of inducible heat shock protein-70 (hsp72) enhances bortezomib-induced cell death in human bladder cancer cells. PLoS ONE 8:e69509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135:1441–1455

    Article  PubMed  CAS  Google Scholar 

  • Saikumar P, Dong Z, Patel Y, Hall K, Hopfer U, Weinberg JM, Venkatachalam MA (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Dong Z, Wei H (2007) The involvement of heat shock proteins in murine liver regeneration. Cell Mol Immunol 4:53–57

    PubMed  CAS  Google Scholar 

  • Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD (2005) Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 280:38729–38739

    Article  PubMed  CAS  Google Scholar 

  • Townley-Tilson WH, Callis TE, Wang D (2010) MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol 42:1252–1255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tsan MF, Gao B (2009) Heat shock proteins and immune system. J Leukoc Biol 85:905–910

    Article  PubMed  CAS  Google Scholar 

  • Varendi K, Kumar A, Härma MA, Andressoo JO (2014) miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci. doi:10.1007/s00018-014-1628-x

  • Wang H, Yao Y, Jiang X, Xiong Y, Mu D (2006) Expression of Nogo-A and NgR in the developing rat brain after hypoxia-ischemia. Brain Res 1114:212–220

    Article  PubMed  CAS  Google Scholar 

  • Wang PF, Fang H, Chen J, Lin S, Liu Y, Xiong XY, Wang YC, Xiong RP, Lv FL, Wang J, Yang QW (2014) Polyinosinic-polycytidylic acid has therapeutic effects against cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via TLR3. J Immunol 192:4783–4794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wei JD, Lin YL, Tsai CH, Shieh HS, Lin PI, Ho WP, Chen RM (2012) SATB2 participates in regulation of menadione-induced apoptotic insults to osteoblasts. J Orthop Res 30:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Wu TT, Tai YT, Cherng YG, Chen TG, Chen TL, Chang HC, Chen RM (2013) GATA-2 transduces LPS-induced il- gene expression in macrophages via a toll-like receptor 4/MD88/MAPK-dependent mechanism. PLoS ONE 8:e72404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, Li X, Li B, Lu Y, Yang B, Shan H (2010) Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem 26:991–998

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the Chi-Mei Medical Center (100CM-TMU-13-3), Tainan, Taiwan; Wan-Fang Hospital (101wf-eva-06), the National Science Council (NSC101-2314-B-038-008-MY3; NSC101-2314-B-038-003-MY3), and Health and Welfare Surcharge of Tobacco Products (MOHW103-TD-B-111-01), Taipei, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruei-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CY., Lui, TN., Lin, JW. et al. Roles of microRNA-1 in hypoxia-induced apoptotic insults to neuronal cells. Arch Toxicol 90, 191–202 (2016). https://doi.org/10.1007/s00204-014-1364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1364-x

Keywords

Navigation