Skip to main content

Advertisement

Log in

HepaRG microencapsulated spheroids in DMSO-free culture: novel culturing approaches for enhanced xenobiotic and biosynthetic metabolism

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The need for models that recapitulate liver physiology is perceived for drug development, study of liver disease and bioartificial liver support. The bipotent cell line HepaRG constitutes an efficient surrogate of liver function, yet its differentiated status relies on high concentrations of DMSO, which may compromise the study of drug metabolism and limit the applicability of this hepatic model. Herein, we present a three-dimensional (3D) strategy for the differentiation of HepaRG based on alginate microencapsulation of cell spheroids and culture in dimethyl sulfoxide (DMSO)-free conditions. A ratio of 2.9:1 hepatocyte-like to biliary-like cells was obtained in the 3D culture, with an improvement of 35.9 % in the hepatocyte differentiation when compared with two-dimensional (2D) cultures. The expression of the hepatic identity genes HNF4α and PXR in 3D cultures was comparable to 2D differentiated cultures, while the expression of homeostatic-associated genes albumin and carbamoyl phosphate synthase 1 was higher in 3D. Moreover, the spheroids presented a polarized organization, exhibiting an interconnected bile canalicular network and excretory functionality, assessed by specific activity of MRP2. Importantly, despite variability in basal gene expression levels, the activity of the phase I enzymes cytochrome P450 family 3, subfamily A, polypeptide 4 and cytochrome P450 family 1, subfamily A, polypeptide 2 upon induction was comparable to differentiated 2D cultures and albumin production and ammonia detoxification were enhanced in 3D. The presented model is suitable for toxicological applications, as it allows high throughput analysis of multiple compounds in a DMSO-free setting. Due to the high xenobiotic metabolism and maintenance of biosynthetic functions, the applicability of this model might be broadened to understand liver physiology and for bioartificial liver applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALB:

Albumin

ALF:

Acute liver failure

DMSO:

Dimethyl sulfoxide

3D:

Three-dimensional

2D:

Two-dimensional

MRP2:

Multidrug resistance protein 2

CYP3A4:

Cytochrome P450 family 3, subfamily A, polypeptide 4

CYP1A2:

Cytochrome P450 family 1, subfamily A, polypeptide 2

BAL:

Bioartificial liver

PSC:

Pluripotent stem cells

BLC:

Biliary-like cells

HLC:

Hepatocyte-like cells

PV:

Perivenous

PP:

Periportal

Rif:

Rifampicin

BNF:

β-Naphthoflavone

VC:

Vehicle control

CDFDA:

5-(and-6)-Carboxy-2,7-dichlorofluorescein diacetate

GS:

Glutamine synthase

HNF4α:

Hepatocyte nuclear factor 4 alpha

HNF3β:

Hepatocyte nuclear factor 3 beta

HH:

Human hepatocytes

PXR:

Pregnane X receptor

CPS1:

Carbamoyl phosphate synthase 1

CYP2C9:

Cytochrome P450 family 2, subfamily C, polypeptide 9

ZO-1:

Zonnula occludens protein 1

G6PC:

Glucose-6-phosphatase

References

  • Antherieu S, Chesne C, Li R, Camus S, Lahoz A, Picazo L, Turpeinen M, Tolonen A, Uusitalo J, Guguen-Guillouzo C, Guillouzo A (2010) Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metab Dispos 38(3):516–525. doi:10.1124/dmd.109.030197

    Article  CAS  PubMed  Google Scholar 

  • Bhatt T, Rizvi A, Batta SP, Kataria S, Jamora C (2013) Signaling and mechanical roles of E-cadherin. Cell Commun Adhes. doi:10.3109/15419061.2013.854778

    PubMed  Google Scholar 

  • Cai ZH, Shi ZQ, O’Shea GM, Sun AM (1988) Microencapsulated hepatocytes for bioartificial liver support. Artif Organs 12(5):388–393

    Article  CAS  PubMed  Google Scholar 

  • Capone SH, Dufresne M, Rechel M, Fleury MJ, Salsac AV, Paullier P, Daujat-Chavanieu M, Legallais C (2013) Impact of alginate composition: from bead mechanical properties to encapsulated HepG2/C3A cell activities for in vivo implantation. PLoS ONE 8(4):e62032. doi:10.1371/journal.pone.0062032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Celli JP, Rizvi I, Blanden AR, Massodi I, Glidden MD, Pogue BW, Hasan T (2014) An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci Rep 4:3751

    Article  PubMed Central  PubMed  Google Scholar 

  • Cerec V, Glaise D, Garnier D, Morosan S, Turlin B, Drenou B, Gripon P, Kremsdorf D, Guguen-Guillouzo C, Corlu A (2007) Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 45(4):957–967. doi:10.1002/hep.21536

    Article  CAS  PubMed  Google Scholar 

  • Cheng N, Wauthier E, Reid LM (2008) Mature human hepatocytes from ex vivo differentiation of alginate-encapsulated hepatoblasts. Tissue Eng Part A 14(1):1–7. doi:10.1089/ten.a.2007.0131

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Han R, Wen F, Ng San San S, Xia L, Wohland T, Leo HL, Yu H (2008) Synthetic sandwich culture of 3D hepatocyte monolayer. Biomaterials 29(3):290–301. doi:10.1016/j.biomaterials.2007.09.016

    Article  CAS  PubMed  Google Scholar 

  • Elkayam T, Amitay-Shaprut S, Dvir-Ginzberg M, Harel T, Cohen S (2006) Enhancing the drug metabolism activities of C3A—a human hepatocyte cell line—by tissue engineering within alginate scaffolds. Tissue Eng 12(5):1357–1368. doi:10.1089/ten.2006.12.1357

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  • Gerets HHJ, Tilmant K, Gerin B, Chanteux H, Depelchin BO, Dhalluin S, Atienzar FA (2012) Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol (28):69–87. doi:10.1007/s10565-011-9208-4

  • Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Bottger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gomez-Lechon MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Haussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhutter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, Lecluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stober R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. doi:10.1007/s00204-013-1078-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 99(24):15655–15660. doi:10.1073/pnas.232137699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gunness P, Mueller D, Shevchenko V, Heinzle E, Ingelman-Sundberg M, Noor F (2013) 3D organotypic cultures of human HepaRG cells: a tool for in vitro toxicity studies. Toxicol Sci 133(1):67–78. doi:10.1093/toxsci/kft021

    Article  CAS  PubMed  Google Scholar 

  • Hart SN, Li Y, Nakamoto K, Subileau EA, Steen D, Zhong XB (2010) A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues. Drug Metab Dispos 38(6):988–994. doi:10.1124/dmd.109.031831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Higuchi Y, Kawai K, Yamazaki H, Nakamura M, Bree F, Guguen-Guillouzo C, Suemizu H (2013) The human hepatic cell line HepaRG as a possible cell source for the generation of humanized liver TK-NOG mice. Xenobiotica. doi:10.3109/00498254.2013.836257

    PubMed Central  PubMed  Google Scholar 

  • Hoekstra R, Nibourg GA, van der Hoeven TV, Ackermans MT, Hakvoort TB, van Gulik TM, Lamers WH, Elferink RP, Chamuleau RA (2011) The HepaRG cell line is suitable for bioartificial liver application. Int J Biochem Cell Biol 43(10):1483–1489. doi:10.1016/j.biocel.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra R, Nibourg GA, van der Hoeven TV, Plomer G, Seppen J, Ackermans MT, Camus S, Kulik W, van Gulik TM, Elferink RP, Chamuleau RA (2013) Phase 1 and phase 2 drug metabolism and bile acid production of HepaRG cells in a bioartificial liver in absence of dimethyl sulfoxide. Drug Metab Dispos 41(3):562–567. doi:10.1124/dmd.112.049098

    Article  CAS  PubMed  Google Scholar 

  • Hofmann U, Maier K, Niebel A, Vacun G, Reuss M, Mauch K (2008) Identification of metabolic fluxes in hepatic cells from transient 13C-labeling experiments: Part I. Experimental observations. Biotechnol Bioeng 100(2):344–354

    Article  CAS  PubMed  Google Scholar 

  • Jungermann K (1995) Zonation of metabolism and gene expression in liver. Histochem Cell Biol 103(2):81–91

    Article  CAS  PubMed  Google Scholar 

  • Koizumi T, Aoki T, Kobayashi Y, Yasuda D, Izumida Y, Jin Z, Nishino N, Shimizu Y, Kato H, Murai N, Niiya T, Enami Y, Mitamura K, Yamamoto T, Kusano M (2007) Long-term maintenance of the drug transport activity in cryopreservation of microencapsulated rat hepatocytes. Cell Transplant 16(1):67–73

    Article  PubMed  Google Scholar 

  • Lan S-F, Starly B (2011) Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities. Toxicol Appl Pharmacol 256(1):62–72

    Article  CAS  PubMed  Google Scholar 

  • Le Vee M, Jigorel E, Glaise D, Gripon P, Guguen-Guillouzo C, Fardel O (2006) Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line. Eur J Pharm Sci 28(1–2):109–117. doi:10.1016/j.ejps.2006.01.004

    Article  PubMed  Google Scholar 

  • Le Vee M, Noel G, Jouan E, Stieger B, Fardel O (2013) Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro 27(6):1979–1986. doi:10.1016/j.tiv.2013.07.003

    Article  PubMed  Google Scholar 

  • LeCluyse EL, Witek RP, Andersen ME, Powers MJ (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42(6):501–548. doi:10.3109/10408444.2012.682115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leite SB, Wilk-Zasadna I, Zaldivar JM, Airola E, Reis-Fernandes MA, Mennecozzi M, Guguen-Guillouzo C, Chesne C, Guillou C, Alves PM, Coecke S (2012) Three-dimensional HepaRG model as an attractive tool for toxicity testing. Toxicol Sci 130(1):106–116. doi:10.1093/toxsci/kfs232

    Article  CAS  PubMed  Google Scholar 

  • Lengyel G, Veres Z, Tugyi R, Vereczkey L, Molnar T, Glavinas H, Krajcsi P, Jemnitz K (2008) Modulation of sinusoidal and canalicular elimination of bilirubin-glucuronides by rifampicin and other cholestatic drugs in a sandwich culture of rat hepatocytes. Hepatol Res 38(3):300–309. doi:10.1111/j.1872-034X.2007.00255.x

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Lin J, Bo L, Weidong P, Chen S, Xu R (2010) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Prolif 43(5):427–434. doi:10.1111/j.1365-2184.2010.00692.x

    Article  CAS  PubMed  Google Scholar 

  • Mavri-Damelin D, Damelin LH, Eaton S, Rees M, Selden C, Hodgson HJ (2008) Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia. Biotechnol Bioeng 99(3):644–651. doi:10.1002/bit.21599

    Article  CAS  PubMed  Google Scholar 

  • McClelland R, Wauthier E, Uronis J, Reid L (2008) Gradients in the liver’s extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue Eng Part A 14(1):59–70. doi:10.1089/ten.a.2007.0058

    Article  CAS  PubMed  Google Scholar 

  • Mueller D, Kramer L, Hoffmann E, Klein S, Noor F (2013) 3D organotypic HepaRG cultures as in vitro model for acute and repeated dose toxicity studies. Toxicol In Vitro. doi:10.1016/j.tiv.2013.06.024

    Google Scholar 

  • Nibourg GA, Chamuleau RA, van der Hoeven TV, Maas MA, Ruiter AF, Lamers WH, Oude Elferink RP, van Gulik TM, Hoekstra R (2012) Liver progenitor cell line HepaRG differentiated in a bioartificial liver effectively supplies liver support to rats with acute liver failure. PLoS ONE 7(6):e38778. doi:10.1371/journal.pone.0038778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pal R, Mamidi MK, Das AK, Bhonde R (2012) Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells. Arch Toxicol 86(4):651–661. doi:10.1007/s00204-011-0782-2

    Article  CAS  PubMed  Google Scholar 

  • Parent R, Marion MJ, Furio L, Trepo C, Petit MA (2004) Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 126(4):1147–1156

    Article  PubMed  Google Scholar 

  • Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65(7):1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Schulze A, Mills K, Weiss TS, Urban S (2012) Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology 55(2):373–383. doi:10.1002/hep.24707

    Article  CAS  PubMed  Google Scholar 

  • Su T, Waxman DJ (2004) Impact of dimethyl sulfoxide on expression of nuclear receptors and drug-inducible cytochromes P450 in primary rat hepatocytes. Arch Biochem Biophys 424(2):226–234. doi:10.1016/j.abb.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  • Sun AM, O’Shea GM, Goosen MF (1984) Injectable microencapsulated islet cells as a bioartificial pancreas. Appl Biochem Biotechnol 10:87–99

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Kawabata K, Nagamoto Y, Kishimoto K, Tashiro K, Sakurai F, Tachibana M, Kanda K, Hayakawa T, Furue MK, Mizuguchi H (2013) 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34(7):1781–1789. doi:10.1016/j.biomaterials.2012.11.029

    Article  CAS  PubMed  Google Scholar 

  • Torre C, Perret C, Colnot S (2010) Molecular determinants of liver zonation. Prog Mol Biol Transl Sci 97:127–150. doi:10.1016/B978-0-12-385233-5.00005-2

    Article  CAS  PubMed  Google Scholar 

  • Tostoes RM, Leite SB, Miranda JP, Sousa M, Wang DI, Carrondo MJ, Alves PM (2011) Perfusion of 3D encapsulated hepatocytes—a synergistic effect enhancing long-term functionality in bioreactors. Biotechnol Bioeng 108(1):41–49. doi:10.1002/bit.22920

    Article  CAS  PubMed  Google Scholar 

  • Wenzel C, Riefke B, Grundemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Rase S, Ansari N, Esner M, Bickle M, Pampaloni F, Mattheyer C, Stelzer EH, Parczyk K, Prechtl S, Steigemann P (2014) 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res 323(1):131–143

    Article  CAS  PubMed  Google Scholar 

  • Tostoes RM, Leite SB, Serra M, Jensen J, Bjorquist P, Carrondo MJ, Brito C, Alves PM (2012) Human liver cell spheroids in extended perfusion bioreactor culture for repeated-dose drug testing. Hepatology (Baltimore, Md) 55(4):1227–1236

    Article  CAS  Google Scholar 

  • You J, Park SA, Shin DS, Patel D, Raghunathan VK, Kim M, Murphy CJ, Tae G, Revzin A (2013) Characterizing the effects of heparin gel stiffness on function of primary hepatocytes. Tissue Eng Part A. doi:10.1089/ten.TEA.2012.0681

    PubMed Central  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Xiong H, Patel NJ, Turncliff RZ, Pollack GM, Brouwer KL (2003) Pharmacokinetics of 5 (and 6)-carboxy-2′,7′-dichlorofluorescein and its diacetate promoiety in the liver. J Pharmacol Exp Ther 304(2):801–809. doi:10.1124/jpet.102.044107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Tiago Duarte for discussion and support in GC–MS technique and Daniel Simão for support in microscopy. This work was supported by PhD fellowship to S.R., SFRH/BD/70264/2010 and by PTDC/EBB-BIO/112786/2009, funded by Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. Alves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

204_2014_1320_MOESM1_ESM.tif

Supplementary material Fig. S1 Analysis of proliferation by immunolocalization of the nuclear marker Ki67 a 2D cultures at the proliferative stage (day 2) used as positive control for the Ki67 antibody (green) and DAPI nuclear staining (blue). Cryosection of 3D cultures labeled for DAPI (blue) and Ki67 (green). b 2D cultures at the proliferative stage (day 2) used as positive control for the HNF3β antibody (red) and DAPI nuclear staining (blue). Cryosection of 3D cultures labeled for DAPI (blue) and HNF3β (red). Scale bars represent 10 µm (TIFF 1713 kb)

204_2014_1320_MOESM2_ESM.tif

Supplementary material Fig. S2 Accumulation of CDFDA within the spheroids by inhibition of the phase III transporter MRP2 with 500 µM of Indomethacin. Scale bar represents 10 µm (TIFF 413 kb)

Supplementary material Video 1 3D projection of the bile canalicular network, visualized through the excretion of the fluorescent substrate CDFDA (AVI 8444 kb)

Supplementary material 4 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebelo, S.P., Costa, R., Estrada, M. et al. HepaRG microencapsulated spheroids in DMSO-free culture: novel culturing approaches for enhanced xenobiotic and biosynthetic metabolism. Arch Toxicol 89, 1347–1358 (2015). https://doi.org/10.1007/s00204-014-1320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1320-9

Keywords

Navigation