Skip to main content

Advertisement

Log in

Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The discovery and characterization of breast cancer resistance protein (BCRP) as an efflux transporter conferring multidrug resistance has set off a remarkable trajectory in the understanding of its role in physiology and disease. While the relevance in drug resistance and general pharmacokinetic properties quickly became apparent, the lack of a characteristic phenotype in genetically impaired animals and humans cast doubt on the physiological importance of this ATP-binding cassette family member, similarly to fellow multidrug transporters, despite well-known endogenous substrates. Later, high-performance genetic analyses and fine resolution tissue expression data forayed into unexpected territories concerning BCRP relevance, and ultimately, the rise of quantitative proteomics allows putting observed interactions into absolute frameworks for modeling and insight into interindividual and species differences. This overview summarizes existing knowledge on the BCRP transporter on molecular, tissue and system level, both in physiology and disease, and describes a selection of experimental procedures that are the most widely applied for the identification and characterization of substrate and inhibitor-type interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36(3):437–449. doi:10.1007/s10545-013-9608-0

    CAS  PubMed  Google Scholar 

  • Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2(3):106–113

    CAS  PubMed  Google Scholar 

  • Abuznait AH, Kaddoumi A (2012) Role of ABC transporters in the pathogenesis of Alzheimer’s disease. ACS Chem Neurosci 3(11):820–831. doi:10.1021/cn300077c

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adachi Y, Suzuki H, Schinkel AH, Sugiyama Y (2005) Role of breast cancer resistance protein (Bcrp1/Abcg2) in the extrusion of glucuronide and sulfate conjugates from enterocytes to intestinal lumen. Mol Pharmacol 67(3):923–928. doi:10.1124/mol.104.007393

    CAS  PubMed  Google Scholar 

  • Adachi T, Nakagawa H, Chung I, Hagiya Y, Hoshijima K, Noguchi N, Kuo MT, Ishikawa T (2007) Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J Exp Ther Oncol 6(4):335–348

    CAS  PubMed  Google Scholar 

  • Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, Gross AS, Polli JW, Lou Y, Lee EJ (2008) The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects. Br J Clin Pharmacol 66(2):233–239. doi:10.1111/j.1365-2125.2008.03184.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adkison KK, Vaidya SS, Lee DY, Koo SH, Li L, Mehta AA, Gross AS, Polli JW, Humphreys JE, Lou Y, Lee EJ (2010) Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci 99(2):1046–1062. doi:10.1002/jps.21860

    CAS  PubMed  Google Scholar 

  • Agarwal S, Hartz AM, Elmquist WF, Bauer B (2011a) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17(26):2793–2802. doi:10.2174/138161211797440186

  • Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011b) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336(1):223–233. doi:10.1124/jpet.110.175034

  • Ahmed-Belkacem A, Pozza A, Munoz-Martinez F, Bates SE, Castanys S, Gamarro F, Di Pietro A, Perez-Victoria JM (2005) Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res 65(11):4852–4860. doi:10.1158/0008-5472.CAN-04-1817

    CAS  PubMed  Google Scholar 

  • Akasaka K, Kaburagi T, Yasuda S, Ohmori K, Abe K, Sagara H, Ueda Y, Nagao K, Imura J, Imai Y (2010) Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non-small-cell lung cancer. Cancer Chemother Pharmacol 66(4):691–698. doi:10.1007/s00280-009-1211-6

    CAS  PubMed  Google Scholar 

  • Alcorn J, McNamara PJ (2002) Acyclovir, ganciclovir, and zidovudine transfer into rat milk. Antimicrob Agents Chemother 46(6):1831–1836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aliabadi HM, Landry B, Mahdipoor P, Hsu CY, Uludag H (2012) Effective down-regulation of breast cancer resistance protein (BCRP) by siRNA delivery using lipid-substituted aliphatic polymers. Eur J Pharm Biopharm 81(1):33–42. doi:10.1016/j.ejpb.2012.01.011

    CAS  PubMed  Google Scholar 

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1(6):417–425

    CAS  PubMed  Google Scholar 

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323(5922):1718–1722. doi:10.1126/science.1168750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58(23):5337–5339

    CAS  PubMed  Google Scholar 

  • Alvarez AI, Vallejo F, Barrera B, Merino G, Prieto JG, Tomas-Barberan F, Espin JC (2011) Bioavailability of the glucuronide and sulfate conjugates of genistein and daidzein in breast cancer resistance protein 1 knockout mice. Drug Metab Dispos 39(11):2008–2012. doi:10.1124/dmd.111.040881

    CAS  PubMed  Google Scholar 

  • Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco M, Dale TC, Smalley MJ (2003) Functional and molecular characterisation of mammary side population cells. Breast Cancer Res 5(1):R1–R8

    PubMed Central  PubMed  Google Scholar 

  • Andersen V, Ostergaard M, Christensen J, Overvad K, Tjonneland A, Vogel U (2009) Polymorphisms in the xenobiotic transporter multidrug resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study. BMC Cancer 9:407. doi:10.1186/1471-2407-9-407

    PubMed Central  PubMed  Google Scholar 

  • Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, Sugiyama Y (2007) Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos 35(10):1873–1879. doi:10.1124/dmd.107.014969

    CAS  PubMed  Google Scholar 

  • Antolin I, Uria H, Tolivia D, Rodriguez-Colunga MJ, Rodriguez C, Kotler ML, Menendez-Pelaez A (1994) Porphyrin accumulation in the Harderian glands of female Syrian hamster results in mitochondrial damage and cell death. Anat Rec 239(4):349–359. doi:10.1002/ar.1092390402

    CAS  PubMed  Google Scholar 

  • Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H (2012) Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol 16(1):89–95. doi:10.1007/s10157-011-0532-z

    CAS  PubMed  Google Scholar 

  • Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468(7323):557–561. doi:10.1038/nature09522

    CAS  PubMed  Google Scholar 

  • Asaba H, Hosoya K, Takanaga H, Ohtsuki S, Tamura E, Takizawa T, Terasaki T (2000) Blood-brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2. J Neurochem 75(5):1907–1916

    CAS  PubMed  Google Scholar 

  • Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134. doi:10.1083/jcb.200202092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Assaraf YG (2006) The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 9(4–5):227–246. doi:10.1016/j.drup.2006.09.001

    CAS  PubMed  Google Scholar 

  • Aust S, Obrist P, Jaeger W, Klimpfinger M, Tucek G, Wrba F, Penner E, Thalhammer T (2004) Subcellular localization of the ABCG2 transporter in normal and malignant human gallbladder epithelium. Lab Investig J Tech Method Pathol 84(8):1024–1036. doi:10.1038/labinvest.3700127

    CAS  Google Scholar 

  • Backstrom G, Taipalensuu J, Melhus H, Brandstrom H, Svensson AC, Artursson P, Kindmark A (2003) Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Euro J Pharm Sci Off J Euro Fed Pharm Sci 18(5):359–364

    CAS  Google Scholar 

  • Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD (2001) Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 1520(3):234–241

    CAS  PubMed  Google Scholar 

  • Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 1826(2):272–296. doi:10.1016/j.bbcan.2012.04.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bar T (1980) The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 59(I–VI):1–62

  • Bardin T, Richette P (2014) Definition of hyperuricemia and gouty conditions. Curr Opin Rheumatol 26(2):186–191. doi:10.1097/BOR.0000000000000028

    CAS  PubMed  Google Scholar 

  • Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD, Vaalburg W, van der Graaf WT (2004) The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal blood-testis barrier and in primary testicular tumours. Eur J Cancer 40(14):2064–2070. doi:10.1016/j.ejca.2004.05.010

    CAS  PubMed  Google Scholar 

  • Basseville A, Tamaki A, Ierano C, Trostel S, Ward Y, Robey RW, Hegde RS, Bates SE (2012) Histone deacetylase inhibitors influence chemotherapy transport by modulating expression and trafficking of a common polymorphic variant of the ABCG2 efflux transporter. Cancer Res 72(14):3642–3651. doi:10.1158/0008-5472.CAN-11-2008

    CAS  PubMed  Google Scholar 

  • Becker JP, Depret G, Van Bambeke F, Tulkens PM, Prevost M (2009) Molecular models of human P-glycoprotein in two different catalytic states. BMC Struct Biol 9:3. doi:10.1186/1472-6807-9-3

    PubMed Central  PubMed  Google Scholar 

  • Beery E, Rajnai Z, Abonyi T, Makai I, Bansaghi S, Erdo F, Sziraki I, Heredi-Szabo K, Kis E, Jani M, Marki-Zay J, Toth KG, Krajcsi P (2011) ABCG2 modulates chlorothiazide permeability in vitro - characterization of the interaction. Drug Metab Pharmacokinet 27(3):349–353

  • Bhatia A, Schafer HJ, Hrycyna CA (2005) Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Biochemistry 44(32):10893–10904. doi:10.1021/bi0503807

    CAS  PubMed  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235. doi:10.1016/j.stem.2009.01.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bleyer AJ, Hart TC (2006) Genetic factors associated with gout and hyperuricemia. Adv Chronic Kidney Dis 13(2):124–130. doi:10.1053/j.ackd.2006.01.008

    PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(Spec No): 179–194

  • Bosch TM, Kjellberg LM, Bouwers A, Koeleman BP, Schellens JH, Beijnen JH, Smits PH, Meijerman I (2005) Detection of single nucleotide polymorphisms in the ABCG2 gene in a Dutch population. Am J Pharm Genomics Related Res Drug Dev Clin Pract 5(2):123–131

    CAS  Google Scholar 

  • Brand W, van der Wel PA, Rein MJ, Barron D, Williamson G, van Bladeren PJ, Rietjens IM (2008) Metabolism and transport of the citrus flavonoid hesperetin in Caco-2 cell monolayers. Drug Metab Dispos 36(9):1794–1802. doi:10.1124/dmd.107.019943

    CAS  PubMed  Google Scholar 

  • Brand W, Oosterhuis B, Krajcsi P, Barron D, Dionisi F, van Bladeren PJ, Rietjens IM, Williamson G (2011) Interaction of hesperetin glucuronide conjugates with human BCRP, MRP2 and MRP3 as detected in membrane vesicles of overexpressing baculovirus-infected Sf9 cells. Biopharm Drug Dispos 32(9):530–535. doi:10.1002/bdd.780

    CAS  PubMed  Google Scholar 

  • Breedveld P, Zelcer N, Pluim D, Sonmezer O, Tibben MM, Beijnen JH, Schinkel AH, van Tellingen O, Borst P, Schellens JH (2004) Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 64(16):5804–5811. doi:10.1158/0008-5472.CAN-03-4062

    CAS  PubMed  Google Scholar 

  • Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, Schellens JH (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65(7):2577–2582. doi:10.1158/0008-5472.CAN-04-2416

    CAS  PubMed  Google Scholar 

  • Breedveld P, Pluim D, Cipriani G, Dahlhaus F, van Eijndhoven MA, de Wolf CJ, Kuil A, Beijnen JH, Scheffer GL, Jansen G, Borst P, Schellens JH (2007) The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models. Mol Pharmacol 71(1):240–249. doi:10.1124/mol.106.028167

    CAS  PubMed  Google Scholar 

  • Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S, Ambudkar SV, Wang Y, Wennemuth G, Burchert A, Boudriot U, Neubauer A (2007) Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21(6):1267–1275. doi:10.1038/sj.leu.2404638

    CAS  PubMed  Google Scholar 

  • Brown CD, Sayer R, Windass AS, Haslam IS, De Broe ME, D’Haese PC, Verhulst A (2008) Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling. Toxicol Appl Pharmacol 233(3):428–438. doi:10.1016/j.taap.2008.09.018

    CAS  PubMed  Google Scholar 

  • Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G, Nooter K (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104(9):2940–2942. doi:10.1182/blood-2004-04-1398

    CAS  PubMed  Google Scholar 

  • Busti AJ, Bain AM, Hall RG 2nd, Bedimo RG, Leff RD, Meek C, Mehvar R (2008) Effects of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J Cardiovasc Pharmacol 51(6):605–610. doi:10.1097/FJC.0b013e31817b5b5a

    CAS  PubMed  Google Scholar 

  • Campa D, Pardini B, Naccarati A, Vodickova L, Novotny J, Forsti A, Hemminki K, Barale R, Vodicka P, Canzian F (2008) A gene-wide investigation on polymorphisms in the ABCG2/BRCP transporter and susceptibility to colorectal cancer. Mutat Res 645(1–2):56–60. doi:10.1016/j.mrfmmm.2008.08.001

    CAS  PubMed  Google Scholar 

  • Campa D, Muller P, Edler L, Knoefel L, Barale R, Heussel CP, Thomas M, Canzian F, Risch A (2012) A comprehensive study of polymorphisms in ABCB1, ABCC2 and ABCG2 and lung cancer chemotherapy response and prognosis. Int J Cancer 131(12):2920–2928. doi:10.1002/ijc.27567

    CAS  PubMed  Google Scholar 

  • Candela P, Gosselet F, Saint-Pol J, Sevin E, Boucau MC, Boulanger E, Cecchelli R, Fenart L (2010) Apical-to-basolateral transport of amyloid-beta peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 22(3):849–859. doi:10.3233/JAD-2010-100462

    CAS  PubMed  Google Scholar 

  • Carcaboso AM, Elmeliegy MA, Shen J, Juel SJ, Zhang ZM, Calabrese C, Tracey L, Waters CM, Stewart CF (2010) Tyrosine kinase inhibitor gefitinib enhances topotecan penetration of gliomas. Cancer Res 70(11):4499–4508. doi:10.1158/0008-5472.CAN-09-4264

  • Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66(1):85–94

    CAS  PubMed  Google Scholar 

  • Chauhan PS, Bhushan B, Singh LC, Mishra AK, Saluja S, Mittal V, Gupta DK, Kapur S (2012) Expression of genes related to multiple drug resistance and apoptosis in acute leukemia: response to induction chemotherapy. Exp Mol Pathol 92(1):44–49. doi:10.1016/j.yexmp.2011.09.004

    CAS  PubMed  Google Scholar 

  • Chearwae W, Shukla S, Limtrakul P, Ambudkar SV (2006) Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin. Mol Cancer Ther 5(8):1995–2006. doi:10.1158/1535-7163.MCT-06-0087

    CAS  PubMed  Google Scholar 

  • Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, Ross DD, Bates SE, Kruh GD (2003) Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 63(14):4048–4054

    CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. doi:10.1038/nature11287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen B, Xue Z, Yang G, Shi B, Yang B, Yan Y, Wang X, Han D, Huang Y, Dong W (2013a) Akt-signal integration is involved in the differentiation of embryonal carcinoma cells. PLoS ONE 8(6):e64877. doi:10.1371/journal.pone.0064877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen P, Chen H, Zang X, Chen M, Jiang H, Han S, Wu X (2013b) Expression of efflux transporters in human ocular tissues. Drug Metab Dispos Biol Fate Chem 41(11):1934–1948. doi:10.1124/dmd.113.052704

    CAS  PubMed  Google Scholar 

  • Choijamts B, Jimi S, Kondo T, Naganuma Y, Matsumoto T, Kuroki M, Iwasaki H, Emoto M (2011) CD133+ cancer stem cell-like cells derived from uterine carcinosarcoma (malignant mixed Mullerian tumor). Stem Cells 29(10):1485–1495. doi:10.1002/stem.711

    CAS  PubMed  Google Scholar 

  • Chu TS, Chen JS, Lopez JP, Pardo FS, Aguilera J, Ongkeko WM (2008) Imatinib-mediated inactivation of Akt regulates ABCG2 function in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 134(9):979–984. doi:10.1001/archotol.134.9.979

    PubMed  Google Scholar 

  • Chu X, Bleasby K, Evers R (2013) Species differences in drug transporters and implications for translating preclinical findings to humans. Expert Opin Drug Metab Toxicol 9(3):237–252. doi:10.1517/17425255.2013.741589

  • Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82(7):2031–2037

    CAS  PubMed  Google Scholar 

  • Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM (2004) Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res 64(9):3296–3301

    CAS  PubMed  Google Scholar 

  • Clark R, Kerr ID, Callaghan R (2006) Multiple drugbinding sites on the R482G isoform of the ABCG2 transporter. Br J Pharmacol 149(5):506–515. doi:10.1038/sj.bjp.0706904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. NeuroReport 13(16):2059–2063

    CAS  PubMed  Google Scholar 

  • Cress AE, Dalton WS (1996) Multiple drug resistance and intermediate filaments. Cancer Metastasis Rev 15(4):499–506

    CAS  PubMed  Google Scholar 

  • Cusatis G, Sparreboom A (2008) Pharmacogenomic importance of ABCG2. Pharmacogenomics 9(8):1005–1009. doi:10.2217/14622416.9.8.1005

    CAS  PubMed  Google Scholar 

  • Cusatis G, Gregorc V, Li J, Spreafico A, Ingersoll RG, Verweij J, Ludovini V, Villa E, Hidalgo M, Sparreboom A, Baker SD (2006) Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J Natl Cancer Inst 98(23):1739–1742. doi:10.1093/jnci/djj469

    CAS  PubMed  Google Scholar 

  • Cygalova L, Ceckova M, Pavek P, Staud F (2008) Role of breast cancer resistance protein (Bcrp/Abcg2) in fetal protection during gestation in rat. Toxicol Lett 178(3):176–180. doi:10.1016/j.toxlet.2008.03.007

    CAS  PubMed  Google Scholar 

  • Dahan A, Amidon GL (2009) Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol 297(2):G371–G377. doi:10.1152/ajpgi.00102.2009

    CAS  PubMed  Google Scholar 

  • Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112(1):126–135. doi:10.1172/JCI17669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dankers AC, Sweep FC, Pertijs JC, Verweij V, van den Heuvel JJ, Koenderink JB, Russel FG, Masereeuw R (2012) Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones. Cell Tissue Res 349(2):551–563. doi:10.1007/s00441-012-1417-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson S, Stahl S, Paul N, Barber J, Kenna JG (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos 40(1):130–138. doi:10.1124/dmd.111.040758

    CAS  PubMed  Google Scholar 

  • de Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A, McLeod HL (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res Off J Am Assoc Cancer Res 10(17):5889–5894. doi:10.1158/1078-0432.CCR-04-0144

    Google Scholar 

  • de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13(21):6440–6449. doi:10.1158/1078-0432.CCR-07-1335

    PubMed  Google Scholar 

  • Deane R, Bell RD, Sagare A, Zlokovic BV (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord: Drug Targets 8(1):16–30

    CAS  Google Scholar 

  • Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC, Benjamin EJ, van Duijn CM, Witteman JC, Coresh J, Fox CS (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372(9654):1953–1961. doi:10.1016/S0140-6736(08)61343-4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng JW, Shon JH, Shin HJ, Park SJ, Yeo CW, Zhou HH, Song IS, Shin JG (2008) Effect of silymarin supplement on the pharmacokinetics of rosuvastatin. Pharm Res 25(8):1807–1814. doi:10.1007/s11095-007-9492-0

    CAS  PubMed  Google Scholar 

  • Dhakshinamoorthy S, Long DJ 2nd, Jaiswal AK (2000) Antioxidant regulation of genes encoding enzymes that detoxify xenobiotics and carcinogens. Curr Top Cell Regul 36:201–216

    CAS  PubMed  Google Scholar 

  • Diop NK, Hrycyna CA (2005) N-Linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Biochemistry 44(14):5420–5429. doi:10.1021/bi0479858

    CAS  PubMed  Google Scholar 

  • Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95(26):15665–15670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drewes LR (1999) What is the blood-brain barrier? A molecular perspective. Cerebral vascular biology. Adv Exp Med Biol 474:111–122

    CAS  PubMed  Google Scholar 

  • Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2012) Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-GLYCOprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm 9(11):3236–3245. doi:10.1021/mp3003144

    CAS  PubMed  Google Scholar 

  • Dym M (1973) The fine structure of the monkey (Macaca) Sertoli cell and its role in maintaining the blood-testis barrier. Anat Rec 175(4):639–656. doi:10.1002/ar.1091750402

    CAS  PubMed  Google Scholar 

  • Dym M, Fawcett DW (1970) The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 3(3):308–326

    CAS  PubMed  Google Scholar 

  • Eddabra L, Wenner T, El Btaouri H, Baranek T, Madoulet C, Cornillet-Lefebvre P, Morjani H (2012) Arginine 482 to glycine mutation in ABCG2/BCRP increases etoposide transport and resistance to the drug in HEK-293 cells. Oncol Rep 27(1):232–237. doi:10.3892/or.2011.1468

    CAS  PubMed  Google Scholar 

  • Ee PL, Kamalakaran S, Tonetti D, He X, Ross DD, Beck WT (2004) Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 64(4):1247–1251

    CAS  PubMed  Google Scholar 

  • Enokizono J, Kusuhara H, Sugiyama Y (2007a) Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 72(4):967–975. doi:10.1124/mol.107.034751

    CAS  PubMed  Google Scholar 

  • Enokizono J, Kusuhara H, Sugiyama Y (2007b) Regional expression and activity of breast cancer resistance protein (Bcrp/Abcg2) in mouse intestine: overlapping distribution with sulfotransferases. Drug Metab Dispos 35(6):922–928. doi:10.1124/dmd.106.011239

    CAS  PubMed  Google Scholar 

  • Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y (2008) Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos 36(6):995–1002. doi:10.1124/dmd.107.019257

    CAS  PubMed  Google Scholar 

  • Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanai Y, Endou H (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417(6887):447–452. doi:10.1038/nature742

    CAS  PubMed  Google Scholar 

  • Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, Lobie PE, Brennecke SP, Kalionis B, Keelan JA (2007a) The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J 21(13):3592–3605. doi:10.1096/fj.07-8688com

    CAS  PubMed  Google Scholar 

  • Evseenko DA, Paxton JW, Keelan JA (2007b) The xenobiotic transporter ABCG2 plays a novel role in differentiation of trophoblast-like BeWo cells. Placenta 28(Suppl A):S116–S120. doi:10.1016/j.placenta.2006.12.003

  • Fawcett DW, Leak LV, Heidger PM Jr (1970) Electron microscopic observations on the structural components of the blood-testis barrier. J Reprod Fertil Suppl 10:105–122

    CAS  PubMed  Google Scholar 

  • Feher A, Juhasz A, Laszlo A, Pakaski M, Kalman J, Janka Z (2013) Association between the ABCG2 C421A polymorphism and Alzheimer’s disease. Neurosci Lett 550:51–54. doi:10.1016/j.neulet.2013.06.044

    CAS  PubMed  Google Scholar 

  • Feig DI (2014) Serum uric acid and the risk of hypertension and chronic kidney disease. Curr Opin Rheumatol 26(2):176–185. doi:10.1097/BOR.0000000000000033

    CAS  PubMed  Google Scholar 

  • Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359(17):1811–1821. doi:10.1056/NEJMra0800885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feinshtein V, Erez O, Ben-Zvi Z, Eshkoli T, Sheizaf B, Sheiner E, Holcberg G (2013) Cannabidiol enhances xenobiotic permeability through the human placental barrier by direct inhibition of breast cancer resistance protein: an ex vivo study. Am J Obstet Gynecol 209(6):573 e515–573 e571. doi:10.1016/j.ajog.2013.08.005

  • Fetsch PA, Abati A, Litman T, Morisaki K, Honjo Y, Mittal K, Bates SE (2006) Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett 235(1):84–92. doi:10.1016/j.canlet.2005.04.024

    CAS  PubMed  Google Scholar 

  • Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156. doi:10.1038/nrc2789

    CAS  PubMed  Google Scholar 

  • Fujino H, Saito T, Ogawa S, Kojima J (2005) Transporter-mediated influx and efflux mechanisms of pitavastatin, a new inhibitor of HMG-CoA reductase. J Pharm Pharmacol 57(10):1305–1311. doi:10.1211/jpp.57.10.0009

    CAS  PubMed  Google Scholar 

  • Fukudo M, Ikemi Y, Togashi Y, Masago K, Kim YH, Mio T, Terada T, Teramukai S, Mishima M, Inui K, Katsura T (2013) Population pharmacokinetics/pharmacodynamics of erlotinib and pharmacogenomic analysis of plasma and cerebrospinal fluid drug concentrations in Japanese patients with non-small cell lung cancer. Clin Pharmacokinet 52(7):593–609. doi:10.1007/s40262-013-0058-5

    CAS  PubMed  Google Scholar 

  • Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y, Ishikawa T (2009) Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res 26(2):469–479. doi:10.1007/s11095-008-9752-7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao MQ, Choi YP, Kang S, Youn JH, Cho NH (2010) CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29(18):2672–2680. doi:10.1038/onc.2010.35

    CAS  PubMed  Google Scholar 

  • Gardner ER, Ahlers CM, Shukla S, Sissung TM, Ockers SB, Price DK, Hamada A, Robey RW, Steinberg SM, Ambudkar SV, Dahut WL, Figg WD (2008) Association of the ABCG2 C421A polymorphism with prostate cancer risk and survival. BJU Int 102(11):1694–1699. doi:10.1111/j.1464-410X.2008.07913.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gedeon C, Anger G, Piquette-Miller M, Koren G (2008) Breast cancer resistance protein: mediating the trans-placental transfer of glyburide across the human placenta. Placenta 29(1):39–43. doi:10.1016/j.placenta.2007.08.004

    CAS  PubMed  Google Scholar 

  • Gerk PM, Kuhn RJ, Desai NS, McNamara PJ (2001) Active transport of nitrofurantoin into human milk. Pharmacotherapy 21(6):669–675

    CAS  PubMed  Google Scholar 

  • Gil S, Saura R, Forestier F, Farinotti R (2005) P-glycoprotein expression of the human placenta during pregnancy. Placenta 26(2–3):268–270. doi:10.1016/j.placenta.2004.05.013

    CAS  PubMed  Google Scholar 

  • Giri N, Shaik N, Pan G, Terasaki T, Mukai C, Kitagaki S, Miyakoshi N, Elmquist WF (2008) Investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system penetration of abacavir and zidovudine in the mouse. Drug Metab Dispos 36(8):1476–1484. doi:10.1124/dmd.108.020974

    CAS  PubMed  Google Scholar 

  • Glavinas H, Kis E, Pal A, Kovacs R, Jani M, Vagi E, Molnar E, Bansaghi S, Kele Z, Janaky T, Bathori G, von Richter O, Koomen GJ, Krajcsi P (2007) ABCG2 (breast cancer resistance protein/mitoxantrone resistance-associated protein) ATPase assay: a useful tool to detect drug-transporter interactions. Drug Metab Dispos 35(9):1533–1542. doi:10.1124/dmd.106.014605

    CAS  PubMed  Google Scholar 

  • Glavinas H, Mehn D, Jani M, Oosterhuis B, Heredi-Szabo K, Krajcsi P (2008) Utilization of membrane vesicle preparations to study drug-ABC transporter interactions. Expert Opin Drug Metab Toxicol 4(6):721–732. doi:10.1517/17425255.4.6.721

    CAS  PubMed  Google Scholar 

  • Globisch C, Pajeva IK, Wiese M (2008) Identification of putative binding sites of P-glycoprotein based on its homology model. ChemMedChem 3(2):280–295. doi:10.1002/cmdc.200700249

    CAS  PubMed  Google Scholar 

  • Goncalves P, Gregorio I, Martel F (2011) The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein. Am J Physiol Cell Physiol 301(5):C984–C994. doi:10.1152/ajpcell.00146.2011

    CAS  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    CAS  PubMed  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. doi:10.1146/annurev.med.53.082901.103929

    CAS  PubMed  Google Scholar 

  • Gottesman MM, Ambudkar SV (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33(6):453–458

    CAS  PubMed  Google Scholar 

  • Grube M, Reuther S, Meyer Zu, Schwabedissen H, Kock K, Draber K, Ritter CA, Fusch C, Jedlitschky G, Kroemer HK (2007) Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab Dispos 35(1):30–35. doi:10.1124/dmd.106.011411

    CAS  PubMed  Google Scholar 

  • Guo Y, Lubbert M, Engelhardt M (2003) CD34- hematopoietic stem cells: current concepts and controversies. Stem Cells 21(1):15–20. doi:10.1634/stemcells.21-1-15

    CAS  PubMed  Google Scholar 

  • Gutmann H, Hruz P, Zimmermann C, Beglinger C, Drewe J (2005) Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol 70(5):695–699. doi:10.1016/j.bcp.2005.05.031

    CAS  PubMed  Google Scholar 

  • Hahn NM, Marsh S, Fisher W, Langdon R, Zon R, Browning M, Johnson CS, Scott-Horton TJ, Li L, McLeod HL, Sweeney CJ (2006) Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 12(20 Pt 1):6094–6099. doi:10.1158/1078-0432.CCR-06-1188

    CAS  PubMed  Google Scholar 

  • Haider AJ, Briggs D, Self TJ, Chilvers HL, Holliday ND, Kerr ID (2011) Dimerization of ABCG2 analysed by bimolecular fluorescence complementation. PLoS ONE 6(10):e25818. doi:10.1371/journal.pone.0025818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haller S, Schuler F, Lazic SE, Bachir-Cherif D, Kramer SD, Parrott NJ, Steiner G, Belli S (2012) Expression profiles of metabolic enzymes and drug transporters in the liver and along the intestine of beagle dogs. Drug Metab Dispos 40(8):1603–1610. doi:10.1124/dmd.112.045443

  • Hampras SS, Sucheston L, Weiss J, Baer MR, Zirpoli G, Singh PK, Wetzler M, Chennamaneni R, Blanco JG, Ford L, Moysich KB (2010) Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia. Int J Mol Epidemiol Genet 1(3):201–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY, Lee JE, Lee DH, Kim HT, Lee JS (2007) Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 110(1):138–147. doi:10.1002/cncr.22760

    PubMed  Google Scholar 

  • Hasegawa M, Kusuhara H, Adachi M, Schuetz JD, Takeuchi K, Sugiyama Y (2007) Multidrug resistance-associated protein 4 is involved in the urinary excretion of hydrochlorothiazide and furosemide. J Am Soc Nephrol 18(1):37–45. doi:10.1681/ASN.2005090966

    CAS  PubMed  Google Scholar 

  • Hazai E, Bikadi Z (2008) Homology modeling of breast cancer resistance protein (ABCG2). J Struct Biol 162(1):63–74. doi:10.1016/j.jsb.2007.12.001

    CAS  PubMed  Google Scholar 

  • Hegedus C, Szakacs G, Homolya L, Orban TI, Telbisz A, Jani M, Sarkadi B (2009) Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv Drug Deliv Rev 61(1):47–56. doi:10.1016/j.addr.2008.09.007

    CAS  PubMed  Google Scholar 

  • Henrich CJ, Robey RW, Bokesch HR, Bates SE, Shukla S, Ambudkar SV, Dean M, McMahon JB (2007) New inhibitors of ABCG2 identified by high-throughput screening. Mol Cancer Ther 6(12 Pt 1):3271–3278. doi:10.1158/1535-7163.MCT-07-0352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henriksen U, Fog JU, Litman T, Gether U (2005) Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2. J Biol Chem 280(44):36926–36934. doi:10.1074/jbc.M502937200

    CAS  PubMed  Google Scholar 

  • Heverhagen AE, Geis C, Fendrich V, Ramaswamy A, Montalbano R, Di Fazio P, Bartsch DK, Ocker M, Quint K (2013) Embryonic transcription factors CDX2 and Oct4 are overexpressed in neuroendocrine tumors of the ileum: a pilot study. Eur Surg Res 51(1–2):14–20. doi:10.1159/000353612

    CAS  PubMed  Google Scholar 

  • Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos Biol Fate Chem 35(8):1333–1340. doi:10.1124/dmd.107.014902

    CAS  PubMed  Google Scholar 

  • Hirai T, Fukui Y, Motojima K (2007) PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biol Pharma Bull 30(11):2185–2190

    CAS  Google Scholar 

  • Ho RH, Choi L, Lee W, Mayo G, Schwarz UI, Tirona RG, Bailey DG, Michael Stein C, Kim RB (2007) Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenet Genomics 17(8):647–656. doi:10.1097/FPC.0b013e3280ef698f

    CAS  PubMed  Google Scholar 

  • Hofer T, Wenger RH, Kramer MF, Ferreira GC, Gassmann M (2003) Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood 101(1):348–350. doi:10.1182/blood-2002-03-0773

    CAS  PubMed  Google Scholar 

  • Holash JA, Harik SI, Perry G, Stewart PA (1993) Barrier properties of testis microvessels. Proc Natl Acad Sci U S A 90(23):11069–11073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A, Litman T, Dean M, Bates SE (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61(18):6635–6639

    CAS  PubMed  Google Scholar 

  • Honjo Y, Morisaki K, Huff LM, Robey RW, Hung J, Dean M, Bates SE (2002) Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 1(6):696–702

    CAS  PubMed  Google Scholar 

  • Hosomi A, Nakanishi T, Fujita T, Tamai I (2012) Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS ONE 7(2):e30456. doi:10.1371/journal.pone.0030456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, Traxler P (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64(7):2333–2337

    CAS  PubMed  Google Scholar 

  • Hu LL, Wang XX, Chen X, Chang J, Li C, Zhang Y, Yang J, Jiang W, Zhuang SM (2007) BCRP gene polymorphisms are associated with susceptibility and survival of diffuse large B-cell lymphoma. Carcinogenesis 28(8):1740–1744. doi:10.1093/carcin/bgm113

    CAS  PubMed  Google Scholar 

  • Huang L, Wang Y, Grimm S (2006) ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 34(5):738–742. doi:10.1124/dmd.105.007534

    CAS  PubMed  Google Scholar 

  • Huang FF, Wu DS, Zhang L, Yu YH, Yuan XY, Li WJ, Chen XP, Zhao XL, Chen FP, Zeng H (2013a) Inactivation of PTEN increases ABCG2 expression and the side population through the PI3K/Akt pathway in adult acute leukemia. Cancer Lett 336(1):96–105. doi:10.1016/j.canlet.2013.04.006

    CAS  PubMed  Google Scholar 

  • Huang WC, Hsieh YL, Hung CM, Chien PH, Chien YF, Chen LC, Tu CY, Chen CH, Hsu SC, Lin YM, Chen YJ (2013b) BCRP/ABCG2 inhibition sensitizes hepatocellular carcinoma cells to sorafenib. PLoS ONE 8(12):e83627. doi:10.1371/journal.pone.0083627

    PubMed Central  PubMed  Google Scholar 

  • Hue-Roye K, Lomas-Francis C, Coghlan G, Zelinski T, Reid ME (2013) The JR blood group system (ISBT 032): molecular characterization of three new null alleles. Transfusion 53(7):1575–1579. doi:10.1111/j.1537-2995.2012.03930.x

    PubMed  Google Scholar 

  • Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, Russel FG, Masereeuw R (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73(2):220–225. doi:10.1038/sj.ki.5002645

    CAS  PubMed  Google Scholar 

  • Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ (2005) Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 65(15):6640–6650. doi:10.1158/0008-5472.CAN-04-2548

    CAS  PubMed  Google Scholar 

  • Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, Yamanashi Y, Kasuga H, Nakashima H, Nakamura T, Takada Y, Kawamura Y, Inoue H, Okada C, Utsumi Y, Ikebuchi Y, Ito K, Nakamura M, Shinohara Y, Hosoyamada M, Sakurai Y, Shinomiya N, Hosoya T, Suzuki H (2012) Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 3:764. doi:10.1038/ncomms1756

    PubMed Central  PubMed  Google Scholar 

  • Ieiri I (2012a) Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 27(1):85–105 Epub 2011 Nov 2029

    CAS  PubMed  Google Scholar 

  • Ieiri I (2012b) Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 27(1):85–105

    CAS  PubMed  Google Scholar 

  • Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K, Kimura M, Fujino H, Hirano M, Kusuhara H, Irie S, Higuchi S, Sugiyama Y (2007) SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther 82(5):541–547. doi:10.1038/sj.clpt.6100190

    CAS  PubMed  Google Scholar 

  • Ieiri I, Higuchi S, Sugiyama Y (2009) Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 5(7):703–729. doi:10.1517/17425250902976854

    CAS  PubMed  Google Scholar 

  • Iida A, Saito S, Sekine A, Mishima C, Kitamura Y, Kondo K, Harigae S, Osawa S, Nakamura Y (2002) Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 47(6):285–310. doi:10.1007/s100380200041

    CAS  PubMed  Google Scholar 

  • Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, Miki Y, Sugimoto Y (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1(8):611–616

    CAS  PubMed  Google Scholar 

  • Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y (2003) Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol 64(3):610–618. doi:10.1124/mol.64.3.610

    CAS  PubMed  Google Scholar 

  • Imai Y, Tsukahara S, Asada S, Sugimoto Y (2004) Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res 64(12):4346–4352. doi:10.1158/0008-5472.CAN-04-0078

    CAS  PubMed  Google Scholar 

  • Imai Y, Yoshimori M, Fukuda K, Yamagishi H, Ueda Y (2012) The PI3K/Akt inhibitor LY294002 reverses BCRP-mediated drug resistance without affecting BCRP translocation. Oncol Rep 27(6):1703–1709. doi:10.3892/or.2012.1724

    CAS  PubMed  Google Scholar 

  • Inowa T, Hishikawa K, Takeuchi T, Kitamura T, Fujita T (2008) Isolation and potential existence of side population cells in adult human kidney. Int J Urol 15(3):272–274. doi:10.1111/j.1442-2042.2007.01984.x

    PubMed  Google Scholar 

  • Ishikawa T, Tamura A, Saito H, Wakabayashi K, Nakagawa H (2005) Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design. Die Naturwissenschaften 92(10):451–463. doi:10.1007/s00114-005-0019-4

    CAS  PubMed  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100(9):3939–3950. doi:10.1002/jps.22487

    CAS  PubMed  Google Scholar 

  • Itoda M, Saito Y, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Suzuki H, Sugiyama Y, Ozawa S, Sawada J (2003) Eight novel single nucleotide polymorphisms in ABCG2/BCRP in Japanese cancer patients administered irinotecan. Drug Metab Pharmacokinet 18(3):212–217

    PubMed  Google Scholar 

  • Jani M, Szabo P, Kis E, Molnar E, Glavinas H, Krajcsi P (2009) Kinetic characterization of sulfasalazine transport by human ATP-binding cassette G2. Biol Pharm Bull 32(3):497–499

    CAS  PubMed  Google Scholar 

  • Jani M, Makai I, Kis E, Szabo P, Nagy T, Krajcsi P, Lespine A (2011) Ivermectin interacts with human ABCG2. J Pharm Sci 100(1):94–97. doi:10.1002/jps.22262

    CAS  PubMed  Google Scholar 

  • Januchowski R, Wojtowicz K, Sujka-Kordowska P, Andrzejewska M, Zabel M (2013) MDR gene expression analysis of six drug-resistant ovarian cancer cell lines. Biomed Res Int 2013:241763. doi:10.1155/2013/241763

    PubMed Central  PubMed  Google Scholar 

  • Jedlitschky G, Vogelgesang S, Kroemer HK (2010) MDR1-P-glycoprotein (ABCB1)-mediated disposition of amyloid-beta peptides: implications for the pathogenesis and therapy of Alzheimer’s disease. Clin Pharmacol Ther 88(4):441–443. doi:10.1038/clpt.2010.126

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109(5–6):813–836. doi:10.1007/s007020200068

    CAS  PubMed  Google Scholar 

  • Jeong HW, Cui W, Yang Y, Lu J, He J, Li A, Song D, Guo Y, Liu BH, Chai L (2011) SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes. PLoS ONE 6(4):e18372. doi:10.1371/journal.pone.0018372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang W, Xu B, Wu B, Yu R, Hu M (2012) UDP-glucuronosyltransferase (UGT) 1A9-overexpressing HeLa cells is an appropriate tool to delineate the kinetic interplay between breast cancer resistance protein (BRCP) and UGT and to rapidly identify the glucuronide substrates of BCRP. Drug Metab Dispos 40(2):336–345. doi:10.1124/dmd.111.041467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y, Chen Q, Zhao X, Zhou M, Cui Z, Zheng Z, Wang E, Wei M (2013) MiR-181a enhances drug sensitivity in mitoxantrone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 139(3):717–730. doi:10.1007/s10549-013-2607-x

    CAS  PubMed  Google Scholar 

  • Jin QR, Shim WS, Choi MK, Tian GY, Song IS, Yang SG, Kim DD, Chung SJ, Shim CK (2009) Decreased urinary secretion of belotecan in folic acid-induced acute renal failure rats due to down-regulation of Oat1 and Bcrp. Xenobiotica 39(10):711–721. doi:10.1080/00498250903026458

    CAS  PubMed  Google Scholar 

  • Jin MS, Oldham ML, Zhang Q, Chen J (2012) Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490(7421):566–569. doi:10.1038/nature11448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson RJ, Gaucher EA, Sautin YY, Henderson GN, Angerhofer AJ, Benner SA (2008) The planetary biology of ascorbate and uric acid and their relationship with the epidemic of obesity and cardiovascular disease. Med Hypotheses 71(1):22–31. doi:10.1016/j.mehy.2008.01.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92(20):1651–1656

    CAS  PubMed  Google Scholar 

  • Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, Plosch T, Kuipers F, Elferink RP, Rosing H, Beijnen JH, Schinkel AH (2002) The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci USA 99(24):15649–15654. doi:10.1073/pnas.202607599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E, Mesman E, Dale TC, Schinkel AH (2005) The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med 11(2):127–129. doi:10.1038/nm1186

    CAS  PubMed  Google Scholar 

  • Juan ME, Gonzalez-Pons E, Planas JM (2010) Multidrug resistance proteins restrain the intestinal absorption of trans-resveratrol in rats. J Nutr 140(3):489–495. doi:10.3945/jn.109.114959

    CAS  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162

    CAS  PubMed  Google Scholar 

  • Juraschek SP, McAdams-Demarco M, Miller ER, Gelber AC, Maynard JW, Pankow JS, Young H, Coresh J, Selvin E (2014) Temporal relationship between uric acid concentration and risk of diabetes in a community-based study population. Am J Epidemiol. doi:10.1093/aje/kwt320

    Google Scholar 

  • Juvale K, Stefan K, Wiese M (2013) Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2. Eur J Med Chem 67:115–126. doi:10.1016/j.ejmech.2013.06.035

    CAS  PubMed  Google Scholar 

  • Kage K, Tsukahara S, Sugiyama T, Asada S, Ishikawa E, Tsuruo T, Sugimoto Y (2002) Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 97(5):626–630

    CAS  PubMed  Google Scholar 

  • Kage K, Fujita T, Sugimoto Y (2005) Role of Cys-603 in dimer/oligomer formation of the breast cancer resistance protein BCRP/ABCG2. Cancer Sci 96(12):866–872. doi:10.1111/j.1349-7006.2005.00126.x

    CAS  PubMed  Google Scholar 

  • Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in silico peptide selection criteria. Pharm Res 25(6):1469–1483. doi:10.1007/s11095-008-9532-4

    CAS  PubMed  Google Scholar 

  • Kasza I, Varady G, Andrikovics H, Koszarska M, Tordai A, Scheffer GL, Nemeth A, Szakacs G, Sarkadi B (2012) Expression levels of the ABCG2 multidrug transporter in human erythrocytes correspond to pharmacologically relevant genetic variations. PLoS ONE 7(11):e48423. doi:10.1371/journal.pone.0048423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kendall AG (1976) Clinical importance of the rare erythrocyte antibody anti-Jra. Transfusion 16(6):646–647

    CAS  PubMed  Google Scholar 

  • Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M (2009) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86(2):197–203. doi:10.1038/clpt.2009.79

    CAS  PubMed  Google Scholar 

  • Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8(1):22–28

    CAS  PubMed  Google Scholar 

  • Kim IS, Kim HG, Kim DC, Eom HS, Kong SY, Shin HJ, Hwang SH, Lee EY, Lee GW (2008) ABCG2 Q141K polymorphism is associated with chemotherapy-induced diarrhea in patients with diffuse large B-cell lymphoma who received frontline rituximab plus cyclophosphamide/doxorubicin/vincristine/prednisone chemotherapy. Cancer Sci 99(12):2496–2501. doi:10.1111/j.1349-7006.2008.00985.x

    CAS  PubMed  Google Scholar 

  • Kim H, Park MJ, Sung TJ, Choi JS, Hyun J, Park KU, Han KS (2010) Hemolytic disease of the newborn associated with anti-Jra alloimmunization in a twin pregnancy: the first case report in Korea. Korean J Lab Med 30(5):511–515. doi:10.3343/kjlm.2010.30.5.511

    PubMed  Google Scholar 

  • Kim HR, Park HS, Kwon WS, Lee JH, Tanigawara Y, Lim SM, Kim HS, Shin SJ, Ahn JB, Rha SY (2013) Pharmacogenetic determinants associated with sunitinib-induced toxicity and ethnic difference in Korean metastatic renal cell carcinoma patients. Cancer Chemother Pharmacol 72(4):825–835. doi:10.1007/s00280-013-2258-y

    CAS  PubMed  Google Scholar 

  • Kis E, Nagy T, Jani M, Molnar E, Janossy J, Ujhellyi O, Nemet K, Heredi-Szabo K, Krajcsi P (2009) Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis 68(7):1201–1207. doi:10.1136/ard.2007.086264

    CAS  PubMed  Google Scholar 

  • Kitamura S, Maeda K, Wang Y, Sugiyama Y (2008) Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 36(10):2014–2023. doi:10.1124/dmd.108.021410

    CAS  PubMed  Google Scholar 

  • Kiyotani K, Mushiroda T, Imamura CK, Hosono N, Tsunoda T, Kubo M, Tanigawara Y, Flockhart DA, Desta Z, Skaar TC, Aki F, Hirata K, Takatsuka Y, Okazaki M, Ohsumi S, Yamakawa T, Sasa M, Nakamura Y, Zembutsu H (2010) Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28(8):1287–1293. doi:10.1200/JCO.2009.25.7246

    CAS  PubMed  Google Scholar 

  • Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, Kigawa J, Suzuki H, Nanba E, Oshimura M, Terakawa N, Otsubo K, Mine K, Sugiyama Y (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos Biol Fate Chem 33(1):94–101. doi:10.1124/dmd.104.001628

    CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333(3):788–796. doi:10.1124/jpet.109.162321

  • Kodaira H, Kusuhara H, Fujita T, Ushiki J, Fuse E, Sugiyama Y (2011) Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate. J Pharmacol Exp Ther 339(3):935–944. doi:10.1124/jpet.111.180398

    CAS  PubMed  Google Scholar 

  • Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada J, Kobayashi D, Ieiri I, Mine K, Ohtsubo K, Sugiyama Y (2004) Functional analysis of SNPs variants of BCRP/ABCG2. Pharm Res 21(10):1895–1903

    CAS  PubMed  Google Scholar 

  • Korenaga Y, Naito K, Okayama N, Hirata H, Suehiro Y, Hamanaka Y, Matsuyama H, Hinoda Y (2005) Association of the BCRP C421A polymorphism with nonpapillary renal cell carcinoma. Int J Cancer 117(3):431–434. doi:10.1002/ijc.21187

    CAS  PubMed  Google Scholar 

  • Kowalski P, Surowiak P, Lage H (2005) Reversal of different drug-resistant phenotypes by an autocatalytic multitarget multiribozyme directed against the transcripts of the ABC transporters MDR1/P-gp, MRP2, and BCRP. Mol Ther 11(4):508–522. doi:10.1016/j.ymthe.2004.11.016

    CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279(23):24218–24225. doi:10.1074/jbc.M313599200

    CAS  PubMed  Google Scholar 

  • Kruijtzer CM, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM, Schellens JH (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20(13):2943–2950

    CAS  PubMed  Google Scholar 

  • Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH (2007) A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res 13(11):3276–3285. doi:10.1158/1078-0432.CCR-06-2414

    CAS  PubMed  Google Scholar 

  • Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, Fukizawa S, Morimoto N, Ieiri I, Morishita M, Sumita K, Mayahara H, Fujita T, Maeda K, Sugiyama Y (2012) Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol 166(6):1793–1803. doi:10.1111/j.1476-5381.2012.01887.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon MY, Su L, Arndt PA, Garratty G, Blackall DP (2004) Clinical significance of anti-Jra: report of two cases and review of the literature. Transfusion 44(2):197–201

    PubMed  Google Scholar 

  • Lagas JS, van der Kruijssen CM, van de Wetering K, Beijnen JH, Schinkel AH (2009) Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone. Drug Metab Dispos 37(1):129–136. doi:10.1124/dmd.108.023200

    CAS  PubMed  Google Scholar 

  • Lagas JS, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2010) Hepatic clearance of reactive glucuronide metabolites of diclofenac in the mouse is dependent on multiple ATP-binding cassette efflux transporters. Mol Pharmacol 77(4):687–694. doi:10.1124/mol.109.062364

    CAS  PubMed  Google Scholar 

  • Lai Y (2009) Identification of interspecies difference in hepatobiliary transporters to improve extrapolation of human biliary secretion. Expert Opi Drug Metab Toxicol 5(10):1175–1187. doi:10.1517/17425250903127234

    CAS  Google Scholar 

  • Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF (2002) Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 293(2):670–674. doi:10.1016/S0006-291X(02)00275-9

    CAS  PubMed  Google Scholar 

  • Lee YJ, Kusuhara H, Jonker JW, Schinkel AH, Sugiyama Y (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood-brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312(1):44–52. doi:10.1124/jpet.104.073320

    CAS  PubMed  Google Scholar 

  • Lee HK, Hu M, Lui S, Ho CS, Wong CK, Tomlinson B (2013) Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 14(11):1283–1294. doi:10.2217/pgs.13.115

    CAS  PubMed  Google Scholar 

  • Leemhuis T, Yoder MC, Grigsby S, Aguero B, Eder P, Srour EF (1996) Isolation of primitive human bone marrow hematopoietic progenitor cells using Hoechst 33342 and Rhodamine 123. Exp Hematol 24(10):1215–1224

    CAS  PubMed  Google Scholar 

  • Leitner HM, Kachadourian R, Day BJ (2007) Harnessing drug resistance: using ABC transporter proteins to target cancer cells. Biochem Pharmacol 74(12):1677–1685. doi:10.1016/j.bcp.2007.05.014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levene C, Sela R, Dvilansky A, Yermiahu T, Daniels G (1986) The Jr(a-) phenotype and anti-Jra in two Beduin Arab women in Israel. Transfusion 26(1):119–120

    CAS  PubMed  Google Scholar 

  • Li YF, Polgar O, Okada M, Esser L, Bates SE, Xia D (2007) Towards understanding the mechanism of action of the multidrug resistance-linked half-ABC transporter ABCG2: a molecular modeling study. J Mol Graph Model 25(6):837–851. doi:10.1016/j.jmgm.2006.08.005

    CAS  PubMed  Google Scholar 

  • Li H, Jin HE, Kim W, Han YH, Kim DD, Chung SJ, Shim CK (2008) Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res 25(11):2601–2612. doi:10.1007/s11095-008-9678-0

    CAS  PubMed  Google Scholar 

  • Li N, Palandra J, Nemirovskiy OV, Lai Y (2009) LC-MS/MS mediated absolute quantification and comparison of bile salt export pump and breast cancer resistance protein in livers and hepatocytes across species. Anal Chem 81(6):2251–2259. doi:10.1021/ac8024009

    CAS  PubMed  Google Scholar 

  • Li FG, Chu Y, Meng DM, Tong YW (2011a) [Association of ABCG2 gene C421A polymorphism and susceptibility of primary gout in Han Chinese males]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi =. Chin J Med Genet 28(6):683–685. doi:10.3760/cma.j.issn.1003-9406.2011.06.019

    CAS  Google Scholar 

  • Li J, Volpe DA, Wang Y, Zhang W, Bode C, Owen A, Hidalgo IJ (2011b) Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos 39(7):1196–1202. doi:10.1124/dmd.111.038075

    CAS  PubMed  Google Scholar 

  • Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM (2011c) Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520 h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 81(6):783–792. doi:10.1016/j.bcp.2010.12.018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Zhou S, Li T, Liu Z, Wu J, Zeng G, Liu C, Gong J (2012a) Suppression of BCRP expression and restoration of sensitivity to chemotherapy in multidrug-resistant HCC cell line HEPG2/ADM by RNA interference. Hepatogastroenterology 59(119):2238–2242. doi:10.5754/hge11781

    CAS  PubMed  Google Scholar 

  • Li X, Wang J, Xu Z, Ahmad A, Li E, Wang Y, Qin S, Wang Q (2012b) Expression of sox2 and oct4 and their clinical significance in human non-small-cell lung cancer. Int J Mol Sci 13(6):7663–7675. doi:10.3390/ijms13067663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li WJ, Zhong SL, Wu YJ, Xu WD, Xu JJ, Tang JH, Zhao JH (2013a) Systematic expression analysis of genes related to multidrug-resistance in isogenic docetaxel- and adriamycin-resistant breast cancer cell lines. Mol Biol Rep 40(11):6143–6150. doi:10.1007/s11033-013-2725-x

  • Li L, Agarwal S, Elmquist WF (2013b) Brain efflux index to investigate the influence of active efflux on brain distribution of pemetrexed and methotrexate. Drug Metab Dispos 41(3):659–667. doi:10.1124/dmd.112.049254

  • Liang E, Proudfoot J, Yazdanian M (2000) Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Pharm Res 17(10):1168–1174

    CAS  PubMed  Google Scholar 

  • Liao R, Sun J, Zhang L, Lou G, Chen M, Zhou D, Chen Z, Zhang S (2008) MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 104(3):805–817. doi:10.1002/jcb.21668

    CAS  PubMed  Google Scholar 

  • Lin LC, Yeh CT, Kuo CC, Lee CM, Yen GC, Wang LS, Wu CH, Yang WC, Wu AT (2012) Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/beta-catenin function. J Agric Food Chem 60(28):7031–7039. doi:10.1021/jf301981n

    CAS  PubMed  Google Scholar 

  • Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JH, Beijnen JH, van Tellingen O Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res Off J Am Assoc Cancer Res 19(8):2084–2095. doi:10.1158/1078-0432.CCR-12-3105

  • Linton KJ, Higgins CF (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 453(5):555–567. doi:10.1007/s00424-006-0126-x

    CAS  PubMed  Google Scholar 

  • Litman T, Jensen U, Hansen A, Covitz KM, Zhan Z, Fetsch P, Abati A, Hansen PR, Horn T, Skovsgaard T, Bates SE (2002) Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochim Biophys Acta 1565(1):6–16

    CAS  PubMed  Google Scholar 

  • Liu F, Chen Z, Wang J, Shao X, Cui Z, Yang C, Zhu Z, Xiong D (2008a) Overexpression of cell surface cytokeratin 8 in multidrug-resistant MCF-7/MX cells enhances cell adhesion to the extracellular matrix. Neoplasia 10(11):1275–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Fan D, Qi J, Zhu H, Zhou Y, Yang C, Zhu Z, Xiong D (2008b) Co-expression of cytokeratin 8 and breast cancer resistant protein indicates a multifactorial drug-resistant phenotype in human breast cancer cell line. Life Sci 83(13–14):496–501. doi:10.1016/j.lfs.2008.07.017

    CAS  PubMed  Google Scholar 

  • Liu Y, Zhang C, Fan J, Xiao L, Yin B, Zhou L, Xia S (2011) Comprehensive analysis of clinical significance of stem-cell related factors in renal cell cancer. World J Surg Oncol 9:121. doi:10.1186/1477-7819-9-121

    PubMed Central  PubMed  Google Scholar 

  • Liu S, Agalliu D, Yu C, Fisher M (2012) The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des 18(25):3653–3662

    CAS  PubMed  Google Scholar 

  • Loo TW, Clarke DM (1999) Determining the structure and mechanism of the human multidrug resistance P-glycoprotein using cysteine-scanning mutagenesis and thiol-modification techniques. Biochim Biophys Acta 1461(2):315–325

    CAS  PubMed  Google Scholar 

  • Luk AJ, Simkin PA (2005) Epidemiology of hyperuricemia and gout. Am J Manag Care 11 (15 Suppl):S435–S442 (quiz S465–S438)

  • Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH (2001a) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61(8):3458–3464

    CAS  PubMed  Google Scholar 

  • Maliepaard M, van Gastelen MA, Tohgo A, Hausheer FH, van Waardenburg RC, de Jong LA, Pluim D, Beijnen JH, Schellens JH (2001b) Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin Cancer Res 7(4):935–941

    CAS  PubMed  Google Scholar 

  • Marchetti S, Pluim D, van Eijndhoven M, van Tellingen O, Mazzanti R, Beijnen JH, Schellens JH (2013) Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA. Invest New Drugs 31(5):1125–1135. doi:10.1007/s10637-013-9923-1

    CAS  PubMed  Google Scholar 

  • Marki-Zay J, Tauberne Jakab K, Szeremy P, Krajcsi P (2013) MDR-ABC transporters: biomarkers in rheumatoid arthritis. Clin Exp Rheumatol 31(5):779–787

    PubMed  Google Scholar 

  • Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275

    CAS  PubMed  Google Scholar 

  • Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10(2):140–151. doi:10.1080/14653240801895296

    CAS  PubMed  Google Scholar 

  • Martini M, Ciraolo E, Gulluni F, Hirsch E (2013) Targeting PI3K in cancer: any good news? Front Oncol 3:108. doi:10.3389/fonc.2013.00108

    PubMed Central  PubMed  Google Scholar 

  • Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N (2008) Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet 83(6):744–751. doi:10.1016/j.ajhg.2008.11.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, Ito K, Kusanagi Y, Chiba T, Tadokoro S, Takada Y, Oikawa Y, Inoue H, Suzuki K, Okada R, Nishiyama J, Domoto H, Watanabe S, Fujita M, Morimoto Y, Naito M, Nishio K, Hishida A, Wakai K, Asai Y, Niwa K, Kamakura K, Nonoyama S, Sakurai Y, Hosoya T, Kanai Y, Suzuki H, Hamajima N, Shinomiya N (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 1(5):5ra11. doi:10.1126/scitranslmed.3000237

  • Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, Hosoya T, Shinomiya N (2011) ABCG2/BCRP dysfunction as a major cause of gout. Nucleosides, Nucleotides Nucleic Acids 30(12):1117–1128. doi:10.1080/15257770.2011.633954

    CAS  PubMed  Google Scholar 

  • Matsuo H, Ichida K, Takada T, Nakayama A, Nakashima H, Nakamura T, Kawamura Y, Takada Y, Yamamoto K, Inoue H, Oikawa Y, Naito M, Hishida A, Wakai K, Okada C, Shimizu S, Sakiyama M, Chiba T, Ogata H, Niwa K, Hosoyamada M, Mori A, Hamajima N, Suzuki H, Kanai Y, Sakurai Y, Hosoya T, Shimizu T, Shinomiya N (2013) Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep 3:2014. doi:10.1038/srep02014

    PubMed Central  PubMed  Google Scholar 

  • Matsuo H, Nakayama A, Sakiyama M, Chiba T, Shimizu S, Kawamura Y, Nakashima H, Nakamura T, Takada Y, Oikawa Y, Takada T, Nakaoka H, Abe J, Inoue H, Wakai K, Kawai S, Guang Y, Nakagawa H, Ito T, Niwa K, Yamamoto K, Sakurai Y, Suzuki H, Hosoya T, Ichida K, Shimizu T, Shinomiya N (2014) ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep 4:3755. doi:10.1038/srep03755

    PubMed Central  PubMed  Google Scholar 

  • Matsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y (2005) Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 314(3):1059–1067. doi:10.1124/jpet.105.085589

    CAS  PubMed  Google Scholar 

  • McDevitt CA, Collins RF, Conway M, Modok S, Storm J, Kerr ID, Ford RC, Callaghan R (2006) Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 14(11):1623–1632. doi:10.1016/j.str.2006.08.014

    CAS  PubMed  Google Scholar 

  • Merino G, Jonker JW, Wagenaar E, Pulido MM, Molina AJ, Alvarez AI, Schinkel AH (2005a) Transport of anthelmintic benzimidazole drugs by breast cancer resistance protein (BCRP/ABCG2). Drug Metab Dispos 33(5):614–618. doi:10.1124/dmd.104.003319

    CAS  PubMed  Google Scholar 

  • Merino G, Jonker JW, Wagenaar E, van Herwaarden AE, Schinkel AH (2005b) The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol 67(5):1758–1764. doi:10.1124/mol.104.010439

    CAS  PubMed  Google Scholar 

  • Merino G, Alvarez AI, Pulido MM, Molina AJ, Schinkel AH, Prieto JG (2006) Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab Dispos 34(4):690–695. doi:10.1124/dmd.105.008219

    CAS  PubMed  Google Scholar 

  • Merino G, Perez M, Real R, Egido E, Prieto JG, Alvarez AI (2010) In vivo inhibition of BCRP/ABCG2 mediated transport of nitrofurantoin by the isoflavones genistein and daidzein: a comparative study in Bcrp1(−/−) mice. Pharm Res 27(10):2098–2105. doi:10.1007/s11095-010-0208-5

    CAS  PubMed  Google Scholar 

  • Meyer zu Schwabedissen HE, Jedlitschky G, Gratz M, Haenisch S, Linnemann K, Fusch C, Cascorbi I, Kroemer HK (2005) Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos 33(7):896–904. doi:10.1124/dmd.104.003335

  • Meyer zu Schwabedissen HE, Grube M, Dreisbach A, Jedlitschky G, Meissner K, Linnemann K, Fusch C, Ritter CA, Volker U, Kroemer HK (2006) Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab Dispos 34(4):524–533. doi:10.1124/dmd.105.007591

  • Mikuls TR, Farrar JT, Bilker WB, Fernandes S, Schumacher HR Jr, Saag KG (2005) Gout epidemiology: results from the UK general practice research database, 1990–1999. Ann Rheum Dis 64(2):267–272. doi:10.1136/ard.2004.024091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirosevic Skvrce N, Bozina N, Zibar L, Barisic I, Pejnovic L, Macolic Sarinic V (2013) CYP2C9 and ABCG2 polymorphisms as risk factors for developing adverse drug reactions in renal transplant patients taking fluvastatin: a case-control study. Pharmacogenomics 14(12):1419–1431. doi:10.2217/pgs.13.135

    CAS  PubMed  Google Scholar 

  • Mittapalli RK, Vaidhyanathan S, Sane R, Elmquist WF (2012) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on the brain distribution of a novel BRAF inhibitor: vemurafenib (PLX4032). J Pharmacol Exp Ther 342(1):33–40. doi:10.1124/jpet.112.192195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miwa M, Tsukahara S, Ishikawa E, Asada S, Imai Y, Sugimoto Y (2003) Single amino acid substitutions in the transmembrane domains of breast cancer resistance protein (BCRP) alter cross resistance patterns in transfectants. Int J Cancer 107(5):757–763. doi:10.1002/ijc.11484

    CAS  PubMed  Google Scholar 

  • Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59(1):8–13

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Kwon KW, Yamamoto K, Tone Y, Ihara H, Kato T, Ikeda H, Sekiguchi S (1994) A human monoclonal antibody to high-frequency red cell antigen Jra. Vox Sang 66(1):51–54

    CAS  PubMed  Google Scholar 

  • Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109(2):238–246. doi:10.1002/ijc.11669

    CAS  PubMed  Google Scholar 

  • Mizuno N, Suzuki M, Kusuhara H, Suzuki H, Takeuchi K, Niwa T, Jonker JW, Sugiyama Y (2004) Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metab Dispos 32(9):898–901

    CAS  PubMed  Google Scholar 

  • Mizuno N, Takahashi T, Kusuhara H, Schuetz JD, Niwa T, Sugiyama Y (2007) Evaluation of the role of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in the urinary excretion of sulfate and glucuronide metabolites of edaravone (MCI-186; 3-methyl-1-phenyl-2-pyrazolin-5-one). Drug Metab Dispos 35(11):2045–2052. doi:10.1124/dmd.107.016352

    CAS  PubMed  Google Scholar 

  • Mizuno T, Terada T, Kamba T, Fukudo M, Katsura T, Nakamura E, Ogawa O, Inui K (2010) ABCG2 421C>A polymorphism and high exposure of sunitinib in a patient with renal cell carcinoma. Ann Oncol Off J Euro Soc Med Oncol/ESMO 21(6):1382–1383. doi:10.1093/annonc/mdq150

    CAS  Google Scholar 

  • Mizuno T, Fukudo M, Terada T, Kamba T, Nakamura E, Ogawa O, Inui K, Katsura T (2012) Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet 27(6):631–639

    CAS  PubMed  Google Scholar 

  • Mo W, Zhang JT (2012) Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 3(1):1–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R, Fine A, Quesenberry PJ, Walsh K (2003) Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 278(40):39068–39075. doi:10.1074/jbc.M306362200

    CAS  PubMed  Google Scholar 

  • Moitra K, Silverton L, Limpert K, Im K, Dean M (2011) Moving out: from sterol transport to drug resistance - the ABCG subfamily of efflux pumps. Drug Metabol Drug Interact 26(3):105–111. doi:10.1515/DMDI.2011.015

    CAS  PubMed  Google Scholar 

  • Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA (2012) Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol 60(1):42–48. doi:10.1097/FJC.0b013e318256cdf0

  • Muller P, Asher N, Heled M, Cohen SB, Risch A, Rund D (2008) Polymorphisms in transporter and phase II metabolism genes as potential modifiers of the predisposition to and treatment outcome of de novo acute myeloid leukemia in Israeli ethnic groups. Leuk Res 32(6):919–929. doi:10.1016/j.leukres.2007.10.011

    PubMed  Google Scholar 

  • Muller PJ, Dally H, Klappenecker CN, Edler L, Jager B, Gerst M, Spiegelhalder B, Tuengerthal S, Fischer JR, Drings P, Bartsch H, Risch A (2009) Polymorphisms in ABCG2, ABCC3 and CNT1 genes and their possible impact on chemotherapy outcome of lung cancer patients. Int J Cancer 124(7):1669–1674. doi:10.1002/ijc.23956

    PubMed  Google Scholar 

  • Murakami T, Mori N (2012) Involvement of multiple transporters-mediated transports in mizoribine and methotrexate pharmacokinetics. Pharmaceuticals (Basel) 5(8):802–836. doi:10.3390/ph5080802

  • Nakagawa H, Tamura A, Wakabayashi K, Hoshijima K, Komada M, Yoshida T, Kometani S, Matsubara T, Mikuriya K, Ishikawa T (2008) Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2. Biochem J 411(3):623–631. doi:10.1042/BJ20071229

    CAS  PubMed  Google Scholar 

  • Nakagawa H, Wakabayashi-Nakao K, Tamura A, Toyoda Y, Koshiba S, Ishikawa T (2009) Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS J 276(24):7237–7252. doi:10.1111/j.1742-4658.2009.07423.x

    CAS  PubMed  Google Scholar 

  • Nakajima H, Ito K (1978) An example of anti-Jra causing hemolytic disease of the newborn and frequency of Jra antigen in the Japanese population. Vox Sang 35(4):265–267

    CAS  PubMed  Google Scholar 

  • Nakanishi T, Ross DD (2012) Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31(2):73–99. doi:10.5732/cjc.011.10320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakanishi T, Chumsri S, Khakpour N, Brodie AH, Leyland-Jones B, Hamburger AW, Ross DD, Burger AM (2010) Side-population cells in luminal-type breast cancer have tumour-initiating cell properties, and are regulated by HER2 expression and signalling. Br J Cancer 102(5):815–826. doi:10.1038/sj.bjc.6605553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K, Shiozawa K, Kawabata S, Soda H, Ishikawa T, Tanabe S, Kohno S (2001) Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 288(4):827–832. doi:10.1006/bbrc.2001.5850

    CAS  PubMed  Google Scholar 

  • Nakayama A, Matsuo H, Takada T, Ichida K, Nakamura T, Ikebuchi Y, Ito K, Hosoya T, Kanai Y, Suzuki H, Shinomiya N (2011) ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides, Nucleotides Nucleic Acids 30(12):1091–1097. doi:10.1080/15257770.2011.633953

    CAS  PubMed  Google Scholar 

  • Natarajan K, Xie Y, Baer MR, Ross DD (2012) Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83(8):1084–1103. doi:10.1016/j.bcp.2012.01.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni Z, Mao Q (2011) ATP-binding cassette efflux transporters in human placenta. Curr Pharm Biotechnol 12(4):674–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni Z, Bikadi Z, Cai X, Rosenberg MF, Mao Q (2010a) Transmembrane helices 1 and 6 of the human breast cancer resistance protein (BCRP/ABCG2): identification of polar residues important for drug transport. Am J Physiol Cell Physiol 299(5):C1100–C1109. doi:10.1152/ajpcell.00160.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni Z, Bikadi Z, Rosenberg MF, Mao Q (2010b) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11(7):603–617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ni Z, Mark ME, Cai X, Mao Q (2010c) Fluorescence resonance energy transfer (FRET) analysis demonstrates dimer/oligomer formation of the human breast cancer resistance protein (BCRP/ABCG2) in intact cells. Int J Biochem Mol Biol 1(1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab Pharmacokinet 20(6):452–477

    CAS  PubMed  Google Scholar 

  • Noguchi K, Kawahara H, Kaji A, Katayama K, Mitsuhashi J, Sugimoto Y (2009) Substrate-dependent bidirectional modulation of P-glycoprotein-mediated drug resistance by erlotinib. Cancer Sci 100(9):1701–1707. doi:10.1111/j.1349-7006.2009.01213.x

    CAS  PubMed  Google Scholar 

  • Nuki G, Simkin PA (2006) A concise history of gout and hyperuricemia and their treatment. Arthritis Res Ther 8(Suppl 1):S1. doi:10.1186/ar1906

    PubMed Central  PubMed  Google Scholar 

  • Nussbaum RL (2013) Genome-wide association studies, Alzheimer disease, and understudied populations. JAMA 309(14):1527–1528. doi:10.1001/jama.2013.3507

    CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421. doi:10.1016/S0896-6273(03)00434-3

  • Oh ES, Kim CO, Cho SK, Park MS, Chung JY (2013) Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab Pharmacokinet 28(3):196–202. doi:10.2133/dmpk.DMPK-12-RG-068

  • Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100(9):3547–3559. doi:10.1002/jps.22612

    CAS  PubMed  Google Scholar 

  • Okura T, Ibe M, Umegaki K, Shinozuka K, Yamada S (2010) Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells. Biol Pharm Bull 33(2):255–259

    CAS  PubMed  Google Scholar 

  • Ota S, Ishii G, Goto K, Kubota K, Kim YH, Kojika M, Murata Y, Yamazaki M, Nishiwaki Y, Eguchi K, Ochiai A (2009) Immunohistochemical expression of BCRP and ERCC1 in biopsy specimen predicts survival in advanced non-small-cell lung cancer treated with cisplatin-based chemotherapy. Lung Cancer 64(1):98–104. doi:10.1016/j.lungcan.2008.07.014

    PubMed  Google Scholar 

  • Ouiddir A, Planes C, Fernandes I, VanHesse A, Clerici C (1999) Hypoxia upregulates activity and expression of the glucose transporter GLUT1 in alveolar epithelial cells. Am J Respir Cell Mol Biol 21(6):710–718. doi:10.1165/ajrcmb.21.6.3751

    CAS  PubMed  Google Scholar 

  • Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285(1):111–117. doi:10.1006/bbrc.2001.5130

    CAS  PubMed  Google Scholar 

  • Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Keri G, Orfi L, Nemet K, Sarkadi B (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65(6):1485–1495. doi:10.1124/mol.65.6.1485

    PubMed  Google Scholar 

  • Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A (2005) Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Biochim Biophys Acta 1668(1):53–63. doi:10.1016/j.bbamem.2004.11.005

    PubMed  Google Scholar 

  • Pal A, Mehn D, Molnar E, Gedey S, Meszaros P, Nagy T, Glavinas H, Janaky T, von Richter O, Bathori G, Szente L, Krajcsi P (2007) Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther 321(3):1085–1094. doi:10.1124/jpet.106.119289

    CAS  PubMed  Google Scholar 

  • Pan G, Giri N, Elmquist WF (2007) Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos 35(7):1165–1173. doi:10.1124/dmd.106.014274

    CAS  PubMed  Google Scholar 

  • Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75(6):1374–1379. doi:10.1124/mol.108.054163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pardridge WM (2002) Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 1(2):131–139. doi:10.1038/nrd725

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ, Black KL, Cancilla PA (1992) Blood-brain barrier and new approaches to brain drug delivery. West J Med 156(3):281–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, Schinkel AH (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 312(1):144–152. doi:10.1124/jpet.104.073916

    CAS  PubMed  Google Scholar 

  • Pelletier RM (2011) The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 46(2):49–127. doi:10.1016/j.proghi.2011.05.001

    PubMed  Google Scholar 

  • Peng H, Dong Z, Qi J, Yang Y, Liu Y, Li Z, Xu J, Zhang JT (2009) A novel two mode-acting inhibitor of ABCG2-mediated multidrug transport and resistance in cancer chemotherapy. PLoS ONE 4(5):e5676. doi:10.1371/journal.pone.0005676

    PubMed Central  PubMed  Google Scholar 

  • Peng H, Qi J, Dong Z, Zhang JT (2010) Dynamic vs static ABCG2 inhibitors to sensitize drug resistant cancer cells. PLoS ONE 5(12):e15276. doi:10.1371/journal.pone.0015276

    PubMed Central  PubMed  Google Scholar 

  • Perez M, Real R, Mendoza G, Merino G, Prieto JG, Alvarez AI (2009) Milk secretion of nitrofurantoin, as a specific BCRP/ABCG2 substrate, in assaf sheep: modulation by isoflavones. J Vet Pharmacol Ther 32(5):498–502. doi:10.1111/j.1365-2885.2008.01050.x

    CAS  PubMed  Google Scholar 

  • Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, Geoerger B, Barrois M, Seronie-Vivien S, LeCesne A, Vassal G (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14(21):7102–7109. doi:10.1158/1078-0432.CCR-08-0950

    CAS  PubMed  Google Scholar 

  • Peyrard T, Pham BN, Arnaud L, Fleutiaux S, Brossard Y, Guerin B, Desmoulins I, Rouger P, Le Pennec PY (2008) Fatal hemolytic disease of the fetus and newborn associated with anti-Jr. Transfusion 48(9):1906–1911. doi:10.1111/j.1537-2995.2008.01787.x

    PubMed  Google Scholar 

  • Polgar O, Robey RW, Morisaki K, Dean M, Michejda C, Sauna ZE, Ambudkar SV, Tarasova N, Bates SE (2004) Mutational analysis of ABCG2: role of the GXXXG motif. Biochemistry 43(29):9448–9456. doi:10.1021/bi0497953

    CAS  PubMed  Google Scholar 

  • Polgar O, Ozvegy-Laczka C, Robey RW, Morisaki K, Okada M, Tamaki A, Koblos G, Elkind NB, Ward Y, Dean M, Sarkadi B, Bates SE (2006) Mutational studies of G553 in TM5 of ABCG2: a residue potentially involved in dimerization. Biochemistry 45(16):5251–5260. doi:10.1021/bi0521590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polgar O, Ediriwickrema LS, Robey RW, Sharma A, Hegde RS, Li Y, Xia D, Ward Y, Dean M, Ozvegy-Laczka C, Sarkadi B, Bates SE (2009) Arginine 383 is a crucial residue in ABCG2 biogenesis. Biochim Biophys Acta 1788(7):1434–1443. doi:10.1016/j.bbamem.2009.04.016

    CAS  PubMed  Google Scholar 

  • Poller B, Iusuf D, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH (2011) Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab Dispos 39(5):729–735. doi:10.1124/dmd.110.037317

  • Pozza A, Perez-Victoria JM, Sardo A, Ahmed-Belkacem A, Di Pietro A (2006) Purification of breast cancer resistance protein ABCG2 and role of arginine-482. Cell Mol Life Sci 63(16):1912–1922. doi:10.1007/s00018-006-6159-7

    CAS  PubMed  Google Scholar 

  • Prasad B, Lai Y, Lin Y, Unadkat JD (2013) Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): effect of age, sex, and genotype. J Pharm Sci 102(3):787–793. doi:10.1002/jps.23436

    CAS  PubMed  Google Scholar 

  • Pulido MM, Molina AJ, Merino G, Mendoza G, Prieto JG, Alvarez AI (2006) Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): influence of flavonoids and role in milk secretion in sheep. J Vet Pharmacol Ther 29(4):279–287. doi:10.1111/j.1365-2885.2006.00744.x

    CAS  PubMed  Google Scholar 

  • Qian X, Cheng YH, Jenardhanan P, Mruk DD, Mathur PP, Xia W, Silvestrini B, Cheng CY (2013a) Adjudin disrupts spermatogenesis by targeting drug transporters: lesson from the breast cancer resistance protein (BCRP). Spermatogenesis 3(2):e24993. doi:10.4161/spmg.24993

    PubMed Central  PubMed  Google Scholar 

  • Qian X, Mruk DD, Wong EW, Cheng CY (2013b) Breast cancer resistance protein regulates apical ectoplasmic specialization dynamics stage specifically in the rat testis. Am J Physiol Endocrinol Metab 304(7):E757–E769. doi:10.1152/ajpendo.00645.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raaijmakers MH, de Grouw EP, Heuver LH, van der Reijden BA, Jansen JH, Scheper RJ, Scheffer GL, de Witte TJ, Raymakers RA (2005) Breast cancer resistance protein in drug resistance of primitive CD34+38- cells in acute myeloid leukemia. Clin Cancer Res 11(6):2436–2444. doi:10.1158/1078-0432.CCR-04-0212

    CAS  PubMed  Google Scholar 

  • Reginato AM, Mount DB, Yang I, Choi HK (2012) The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 8(10):610–621. doi:10.1038/nrrheum.2012.144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reid T, Yuen A, Catolico M, Carlson RW (1993) Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol 33(1):82–84

    CAS  PubMed  Google Scholar 

  • Robey RW, Steadman K, Polgar O, Morisaki K, Blayney M, Mistry P, Bates SE (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 64(4):1242–1246. doi:10.1158/0008-5472.CAN-03-3298

  • Robey RW, Massey PR, Amiri-Kordestani L, Bates SE (2010) ABC transporters: unvalidated therapeutic targets in cancer and the CNS. Anticancer Agents Med Chem 10(8):625–633. doi:10.2174/187152010794473957

  • Robey RW, Ierano C, Zhan Z, Bates SE (2011) The challenge of exploiting ABCG2 in the clinic. Curr Pharm Biotechnol 12(4):595–608. doi:10.2174/138920111795163913

  • Robillard KR, Hoque T, Bendayan R (2012) Expression of ATP-binding cassette membrane transporters in rodent and human sertoli cells: relevance to the permeability of antiretroviral therapy at the blood-testis barrier. J Pharmacol Exp Ther 340(1):96–108. doi:10.1124/jpet.111.186916

    CAS  PubMed  Google Scholar 

  • Rosenberg MF, Bikadi Z, Chan J, Liu X, Ni Z, Cai X, Ford RC, Mao Q (2010) The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure 18(4):482–493. doi:10.1016/j.str.2010.01.017

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross DD, Nakanishi T (2010) Impact of breast cancer resistance protein on cancer treatment outcomes. Methods Mol Biol 596:251–290. doi:10.1007/978-1-60761-416-6_12

    CAS  PubMed  Google Scholar 

  • Roy S, Tripathy M, Mathur N, Jain A, Mukhopadhyay A (2012) Hypoxia improves expansion potential of human cord blood-derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 88(5):396–405. doi:10.1111/j.1600-0609.2012.01759.x

    CAS  PubMed  Google Scholar 

  • Saison C, Helias V, Ballif BA, Peyrard T, Puy H, Miyazaki T, Perrot S, Vayssier-Taussat M, Waldner M, Le Pennec PY, Cartron JP, Arnaud L (2012) Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 44(2):174–177. doi:10.1038/ng.1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito H, Hirano H, Nakagawa H, Fukami T, Oosumi K, Murakami K, Kimura H, Kouchi T, Konomi M, Tao E, Tsujikawa N, Tarui S, Nagakura M, Osumi M, Ishikawa T (2006) A new strategy of high-speed screening and quantitative structure-activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J Pharmacol Exp Ther 317(3):1114–1124. doi:10.1124/jpet.105.099036

    CAS  PubMed  Google Scholar 

  • Salmina AB (2009) Neuron-glia interactions as therapeutic targets in neurodegeneration. J Alzheimers Dis 16(3):485–502. doi:10.3233/JAD-2009-0988

    CAS  PubMed  Google Scholar 

  • Sane R, Mittapalli RK, Elmquist WF (2013) Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability. J Pharm Sci 102(4):1343–1354. doi:10.1002/jps.23450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkadi B, Homolya L, Szakacs G, Varadi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86(4):1179–1236. doi:10.1152/physrev.00037.2005

    CAS  PubMed  Google Scholar 

  • Sauna ZE, Ambudkar SV (2007) About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Mol Cancer Ther 6(1):13–23. doi:10.1158/1535-7163.MCT-06-0155

    CAS  PubMed  Google Scholar 

  • Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99(2):507–512

    CAS  PubMed  Google Scholar 

  • Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, Clevers H (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735. doi:10.1126/science.1224676

    CAS  PubMed  Google Scholar 

  • Schrickx JA, Fink-Gremmels J (2007) Danofloxacin-mesylate is a substrate for ATP-dependent efflux transporters. Br J Pharmacol 150(4):463–469. doi:10.1038/sj.bjp.0706974

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schrickx J, Lektarau Y, Fink-Gremmels J (2006) Ochratoxin A secretion by ATP-dependent membrane transporters in Caco-2 cells. Arch Toxicol 80(5):243–249. doi:10.1007/s00204-005-0041-5

    CAS  PubMed  Google Scholar 

  • Schumacher M, Guennoun R, Robel P, Baulieu EE (1997) Neurosteroids in the hippocampus: neuronal plasticity and memory. Stress 2(1):65–78

    CAS  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  • Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763

    CAS  PubMed  Google Scholar 

  • Semsei AF, Erdelyi DJ, Ungvari I, Kamory E, Csokay B, Andrikovics H, Tordai A, Csagoly E, Falus A, Kovacs GT, Szalai C (2008) Association of some rare haplotypes and genotype combinations in the MDR1 gene with childhood acute lymphoblastic leukaemia. Leuk Res 32(8):1214–1220. doi:10.1016/j.leukres.2007.12.009

    CAS  PubMed  Google Scholar 

  • Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T (2008) Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 217(2):388–399. doi:10.1002/jcp.21508

    CAS  PubMed  Google Scholar 

  • Shimizu T, Sugiura T, Wakayama T, Kijima A, Nakamichi N, Iseki S, Silver DL, Kato Y (2011) PDZK1 regulates breast cancer resistance protein in small intestine. Drug Metab Dispos 39(11):2148–2154. doi:10.1124/dmd.111.040295

    CAS  PubMed  Google Scholar 

  • Shiozawa K, Oka M, Soda H, Yoshikawa M, Ikegami Y, Tsurutani J, Nakatomi K, Nakamura Y, Doi S, Kitazaki T, Mizuta Y, Murase K, Yoshida H, Ross DD, Kohno S (2004) Reversal of breast cancer resistance protein (BCRP/ABCG2)-mediated drug resistance by novobiocin, a coumermycin antibiotic. Int J Cancer 108(1):146–151. doi:10.1002/ijc.11528

  • Shugarts S, Benet LZ (2009) The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 26(9):2039–2054. doi:10.1007/s11095-009-9924-0

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla S, Wu CP, Nandigama K, Ambudkar SV (2007) The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance linked ATP binding cassette drug transporter ABCG2. Mol Cancer Ther 6(12 Pt 1):3279–3286. doi:10.1158/1535-7163.MCT-07-0564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shukla S, Zaher H, Hartz A, Bauer B, Ware JA, Ambudkar SV (2009) Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice. Pharm Res 26(2):480–487. doi:10.1007/s11095-008-9735-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonson SG, Raza A, Martin PD, Mitchell PD, Jarcho JA, Brown CD, Windass AS, Schneck DW (2004) Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther 76(2):167–177. doi:10.1016/j.clpt.2004.03.010

    CAS  PubMed  Google Scholar 

  • Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S (2010) Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther 9(8):2365–2376. doi:10.1158/1535-7163.MCT-10-0108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song IS, Lee do Y, Shin MH, Kim H, Ahn YG, Park I, Kim KH, Kind T, Shin JG, Fiehn O, Liu KH (2012) Pharmacogenetics meets metabolomics: discovery of tryptophan as a new endogenous OCT2 substrate related to metformin disposition. PLoS One 7(5):e36637. doi:10.1371/journal.pone.0036637

  • Sorensen LB (1965) Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum 8(5):694–706

    CAS  PubMed  Google Scholar 

  • Sparreboom A, Loos WJ, Burger H, Sissung TM, Verweij J, Figg WD, Nooter K, Gelderblom H (2005) Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol Ther 4(6):650–658

    CAS  PubMed  Google Scholar 

  • Stein WD, Bates SE, Fojo T (2004) Intractable cancers: the many faces of multidrug resistance and the many targets it presents for therapeutic attack. Curr Drug Targets 5(4):333–346

    CAS  PubMed  Google Scholar 

  • Storch CH, Ehehalt R, Haefeli WE, Weiss J (2007) Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther 323(1):257–264. doi:10.1124/jpet.107.122994

    CAS  PubMed  Google Scholar 

  • St-Pierre MV, Serrano MA, Macias RI, Dubs U, Hoechli M, Lauper U, Meier PJ, Marin JJ (2000) Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol Regul Integr Comp Physiol 279(4):R1495–R1503

    CAS  PubMed  Google Scholar 

  • Stroup M (1986) MMJ Five examples of an antibody defining an antigen of high frequency in the Caucasian population: 1970

  • Su Y, Hu P, Lee SH, Sinko PJ (2007) Using novobiocin as a specific inhibitor of breast cancer resistant protein to assess the role of transporter in the absorption and disposition of topotecan. J Pharm Pharm Sci 10(4):519–536

    CAS  PubMed  Google Scholar 

  • Su L, Cheng CY, Mruk DD (2009) Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier. Int J Biochem Cell Biol 41(12):2578–2587. doi:10.1016/j.biocel.2009.08.015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama T, Shuto T, Suzuki S, Sato T, Koga T, Suico MA, Kusuhara H, Sugiyama Y, Cyr DM, Kai H (2011) Posttranslational negative regulation of glycosylated and non-glycosylated BCRP expression by Derlin-1. Biochem Biophys Res Commun 404(3):853–858. doi:10.1016/j.bbrc.2010.12.074

    CAS  PubMed  Google Scholar 

  • Suvannasankha A, Minderman H, O’Loughlin KL, Nakanishi T, Greco WR, Ross DD, Baer MR (2004) Breast cancer resistance protein (BCRP/MXR/ABCG2) in acute myeloid leukemia: discordance between expression and function. Leukemia 18(7):1252–1257. doi:10.1038/sj.leu.2403395

    CAS  PubMed  Google Scholar 

  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278(25):22644–22649. doi:10.1074/jbc.M212399200

    CAS  PubMed  Google Scholar 

  • Szatmari I, Vamosi G, Brazda P, Balint BL, Benko S, Szeles L, Jeney V, Ozvegy-Laczka C, Szanto A, Barta E, Balla J, Sarkadi B, Nagy L (2006) Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem 281(33):23812–23823. doi:10.1074/jbc.M604890200

    CAS  PubMed  Google Scholar 

  • Szolomajer-Csikos O, Beery E, Kosa L, Rajnai Z, Jani M, Hetenyi A, Jakab KT, Krajcsi P, Toth GK (2013) Synthesis and ABCG2 inhibitory activity of novel fumitremorgin C analogs - specificity and structure activity correlations. Med Chem 9(4):494–509

    CAS  PubMed  Google Scholar 

  • Tai LM, Loughlin AJ, Male DK, Romero IA (2009) P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metab 29(6):1079–1083. doi:10.1038/jcbfm.2009.42

    CAS  PubMed  Google Scholar 

  • Taipalensuu J, Tornblom H, Lindberg G, Einarsson C, Sjoqvist F, Melhus H, Garberg P, Sjostrom B, Lundgren B, Artursson P (2001) Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 299(1):164–170

    CAS  PubMed  Google Scholar 

  • Takabayashi T, Murakami M, Yajima H, Tsujiei M, Ozawa N, Yajima A (1985) Influence of maternal antibody anti-Jra on the baby: a case report and pedigree chart. Tohoku J Exp Med 145(1):97–101

    CAS  PubMed  Google Scholar 

  • Takada T, Suzuki H, Gotoh Y, Sugiyama Y (2005) Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos 33(7):905–909. doi:10.1124/dmd.104.003228

    CAS  PubMed  Google Scholar 

  • Takahashi N, Miura M (2011) Therapeutic drug monitoring of imatinib for chronic myeloid leukemia patients in the chronic phase. Pharmacology 87(5–6):241–248. doi:10.1159/000324900

    CAS  PubMed  Google Scholar 

  • Takenaka K, Morgan JA, Scheffer GL, Adachi M, Stewart CF, Sun D, Leggas M, Ejendal KF, Hrycyna CA, Schuetz JD (2007) Substrate overlap between Mrp4 and Abcg2/Bcrp affects purine analogue drug cytotoxicity and tissue distribution. Cancer Res 67(14):6965–6972. doi:10.1158/0008-5472.CAN-06-4720

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Sugiura T, Matsubara K, Sato R, Shimizu T, Masuo Y, Horikawa M, Nakamichi N, Ishiwata N, Kato Y (2014) Interaction of novel platelet-increasing agent eltrombopag with rosuvastatin via breast cancer resistance protein in human. Drug Metab Dispos. doi:10.1124/dmd.113.054767

    PubMed  Google Scholar 

  • Tamai I, Tsuji A (2000) Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 89(11):1371–1388. doi:10.1002/1520-6017(200011)89:11<1371:AID-JPS1>3.0.CO;2-D

    CAS  PubMed  Google Scholar 

  • Tamaki A, Ierano C, Szakacs G, Robey RW, Bates SE (2011) The controversial role of ABC transporters in clinical oncology. Essays Biochem 50(1):209–232. doi:10.1042/bse0500209

    CAS  PubMed  Google Scholar 

  • Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I, Ishikawa T (2006) Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 70(1):287–296. doi:10.1124/mol.106.023556

    CAS  PubMed  Google Scholar 

  • Tamura A, Wakabayashi K, Onishi Y, Takeda M, Ikegami Y, Sawada S, Tsuji M, Matsuda Y, Ishikawa T (2007) Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci 98(2):231–239

    CAS  PubMed  Google Scholar 

  • Tamura M, Kondo M, Horio M, Ando M, Saito H, Yamamoto M, Horio Y, Hasegawa Y (2012) Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and gefitinib toxicity. Nagoya J Med Sci 74(1–2):133–140

    CAS  PubMed  Google Scholar 

  • Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, Kanamori Y, Takahashi M, Kurata Y, Kigawa J, Higuchi S, Terakawa N, Otsubo K (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 297(3):1137–1143

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Slitt AL, Leazer TM, Maher JM, Klaassen CD (2005) Tissue distribution and hormonal regulation of the breast cancer resistance protein (Bcrp/Abcg2) in rats and mice. Biochem Biophys Res Commun 326(1):181–187

    CAS  PubMed  Google Scholar 

  • Tanaka M, Okazaki T, Suzuki H, Abbruzzese JL, Li D (2011) Association of multi-drug resistance gene polymorphisms with pancreatic cancer outcome. Cancer 117(4):744–751. doi:10.1002/cncr.25510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang SC, Lagas JS, Lankheet NA, Poller B, Hillebrand MJ, Rosing H, Beijnen JH, Schinkel AH (2012) Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib coadministration. Int J Cancer 130(1):223–233. doi:10.1002/ijc.26000

    CAS  PubMed  Google Scholar 

  • Taub ME, Podila L, Ely D, Almeida I (2005) Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Drug Metab Dispos 33(11):1679–1687. doi:10.1124/dmd.105.005421

    CAS  PubMed  Google Scholar 

  • Telbisz A, Muller M, Ozvegy-Laczka C, Homolya L, Szente L, Varadi A, Sarkadi B (2007) Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta 1768(11):2698–2713. doi:10.1016/j.bbamem.2007.06.026

    CAS  PubMed  Google Scholar 

  • Thomas F, Rochaix P, White-Koning M, Hennebelle I, Sarini J, Benlyazid A, Malard L, Lefebvre JL, Chatelut E, Delord JP (2009) Population pharmacokinetics of erlotinib and its pharmacokinetic/pharmacodynamic relationships in head and neck squamous cell carcinoma. Eur J Cancer 45(13):2316–2323. doi:10.1016/j.ejca.2009.05.007

    CAS  PubMed  Google Scholar 

  • Tian C, Ambrosone CB, Darcy KM, Krivak TC, Armstrong DK, Bookman MA, Davis W, Zhao H, Moysich K, Gallion H, DeLoia JA (2012) Common variants in ABCB1, ABCC2 and ABCG2 genes and clinical outcomes among women with advanced stage ovarian cancer treated with platinum and taxane-based chemotherapy: a Gynecologic Oncology Group study. Gynecol Oncol 124(3):575–581. doi:10.1016/j.ygyno.2011.11.022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiribelli M, Fabbro D, Franzoni A, Fanin R, Damante G, Damiani D (2013) Q141K polymorphism of ABCG2 protein is associated with poor prognosis in adult acute myeloid leukemia treated with idarubicin-based chemotherapy. Haematologica 98(3):e28–e29. doi:10.3324/haematol.2012.075895

    PubMed Central  PubMed  Google Scholar 

  • To KK, Robey RW, Knutsen T, Zhan Z, Ried T, Bates SE (2009) Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther 8(10):2959–2968. doi:10.1158/1535-7163.MCT-09-0292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomaru A, Morimoto N, Morishita M, Takayama K, Fujita T, Maeda K, Kusuhara H, Sugiyama Y (2013) Studies on the intestinal absorption characteristics of sulfasalazine, a breast cancer resistance protein (BCRP) substrate. Drug Metab Pharmacokinet 28(1):71–74

    CAS  PubMed  Google Scholar 

  • Tompkins LM, Li H, Li L, Lynch C, Xie Y, Nakanishi T, Ross DD, Wang H (2010) A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem Pharmacol 80(11):1754–1761. doi:10.1016/j.bcp.2010.08.016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tournier N, Saba W, Cisternino S, Peyronneau MA, Damont A, Goutal S, Dubois A, Dolle F, Scherrmann JM, Valette H, Kuhnast B, Bottlaender M (2013) Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide. AAPS J 15(4):1082–1090. doi:10.1208/s12248-013-9514-2

    CAS  PubMed  Google Scholar 

  • Toy P, Reid M, Lewis T, Ellisor S, Avoy DR (1981) Does anti-Jra cause hemolytic disease of the newborn? Vox Sang 41(1):40–44

    CAS  PubMed  Google Scholar 

  • Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454. doi:10.1093/jnci/djm135

    CAS  PubMed  Google Scholar 

  • Tritchler JE (1977) An example of anti-Jra. Transfusion 17(2):177–178

    CAS  PubMed  Google Scholar 

  • Troger U, Stotzel B, Martens-Lobenhoffer J, Gollnick H, Meyer FP (2002) Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ 324(7352):1497

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tucker TG, Milne AM, Fournel-Gigleux S, Fenner KS, Coughtrie MW (2012) Absolute immunoquantification of the expression of ABC transporters P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein 2 in human liver and duodenum. Biochem Pharmacol 83(2):279–285. doi:10.1016/j.bcp.2011.10.017

    CAS  PubMed  Google Scholar 

  • Tunggal JK, Melo T, Ballinger JR, Tannock IF (2000) The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers. Int J Cancer 86(1):101–107. doi:10.1002/(SICI)1097-0215(20000401)86:1<101:AID-IJC16>3.0.CO;2-I

    CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Kamiie J, Terasaki T (2011a) Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339(2):579–588. doi:10.1124/jpet.111.184200

    CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011b) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117(2):333–345. doi:10.1111/j.1471-4159.2011.07208.x

    CAS  PubMed  Google Scholar 

  • Uchida Y, Tachikawa M, Obuchi W, Hoshi Y, Tomioka Y, Ohtsuki S, Terasaki T (2013) A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6 J mice. Fluids Barriers CNS 10(1):21. doi:10.1186/2045-8118-10-21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urquhart BL, Ware JA, Tirona RG, Ho RH, Leake BF, Schwarz UI, Zaher H, Palandra J, Gregor JC, Dresser GK, Kim RB (2008) Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics 18(5):439–448. doi:10.1097/FPC.0b013e3282f974dc

    CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001

    CAS  PubMed  Google Scholar 

  • van de Wetering K, Burkon A, Feddema W, Bot A, de Jonge H, Somoza V, Borst P (2009) Intestinal breast cancer resistance protein (BCRP)/Bcrp1 and multidrug resistance protein 3 (MRP3)/Mrp3 are involved in the pharmacokinetics of resveratrol. Mol Pharmacol 75(4):876–885. doi:10.1124/mol.108.052019

    PubMed  Google Scholar 

  • van der Heijden JW, Oerlemans R, Tak PP, Assaraf YG, Kraan MC, Scheffer GL, van der Laken CJ, Lems WF, Scheper RJ, Dijkmans BA, Jansen G (2009) Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. Arthritis Rheum 60(3):669–677. doi:10.1002/art.24354

    PubMed  Google Scholar 

  • van Herwaarden AE, Jonker JW, Wagenaar E, Brinkhuis RF, Schellens JH, Beijnen JH, Schinkel AH (2003) The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res 63(19):6447–6452

    PubMed  Google Scholar 

  • van Herwaarden AE, Wagenaar E, Karnekamp B, Merino G, Jonker JW, Schinkel AH (2006) Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis 27(1):123–130. doi:10.1093/carcin/bgi176

    PubMed  Google Scholar 

  • van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, Schinkel AH (2007) Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 27(4):1247–1253. doi:10.1128/MCB.01621-06

    PubMed Central  PubMed  Google Scholar 

  • Vander Borght S, van Pelt J, van Malenstein H, Cassiman D, Renard M, Verslype C, Libbrecht L, Roskams TA (2008) Up-regulation of breast cancer resistance protein expression in hepatoblastoma following chemotherapy: a study in patients and in vitro. Hepatol Res 38(11):1112–1121. doi:10.1111/j.1872-034X.2008.00381.x

    PubMed  Google Scholar 

  • Varela-Echavarria A, Montes de Oca-Luna R, Barrera-Saldana HA (1988) Uricase protein sequences: conserved during vertebrate evolution but absent in humans. FASEB J 2(15):3092–3096

    CAS  PubMed  Google Scholar 

  • Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vedo M, Reid ME (1978) Anti-Jra in a Mexican American. Transfusion 18(5):569

    CAS  PubMed  Google Scholar 

  • Vethanayagam RR, Wang H, Gupta A, Zhang Y, Lewis F, Unadkat JD, Mao Q (2005) Functional analysis of the human variants of breast cancer resistance protein: I206L, N590Y, and D620 N. Drug Metab Dispos Biol Fate Chem 33(6):697–705. doi:10.1124/dmd.105.003657

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Mohrmann K, Wagenaar E, de Waart DR, Elferink RP, Lagas JS, van Tellingen O, Vainchtein LD, Rosing H, Beijnen JH, Schellens JH, Schinkel AH (2006) Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout mice. J Pharmacol Exp Ther 318(1):319–327. doi:10.1124/jpet.106.101774

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Lagas JS, Schinkel AH (2009a) Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv Drug Deliv Rev 61(1):14–25. doi:10.1016/j.addr.2008.08.007

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Pala Z, van Esch A, Wagenaar E, de Waart DR, van de Wetering K, van der Kruijssen CM, Oude Elferink RP, van Tellingen O, Schinkel AH (2009b) Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 15(9):3084–3093. doi:10.1158/1078-0432.CCR-08-2940

    CAS  Google Scholar 

  • Vlaming ML, van Esch A, van de Steeg E, Pala Z, Wagenaar E, van Tellingen O, Schinkel AH (2011) Impact of abcc2 [multidrug resistance-associated protein (MRP) 2], abcc3 (MRP3), and abcg2 (breast cancer resistance protein) on the oral pharmacokinetics of methotrexate and its main metabolite 7-hydroxymethotrexate. Drug Metab Dispos 39(8):1338–1344. doi:10.1124/dmd.111.038794

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Teunissen SF, van de Steeg E, van Esch A, Wagenaar E, Brunsveld L, de Greef TF, Rosing H, Schellens JH, Beijnen JH, Schinkel AH (2014a) Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine) and its genotoxic metabolites. Mol Pharmacol 85(3):520–530. doi:10.1124/mol.113.088823

    CAS  PubMed  Google Scholar 

  • Vlaming ML, Teunissen SF, van de Steeg E, van Esch A, Wagenaar E, Brunsveld L, de Greef TF, Rosing H, Schellens JH, Beijnen JH, Schinkel AH (2014b) Bcrp1;Mdr1a/b;Mrp2 combination knockout mice: altered disposition of the dietary carcinogen PhIP (2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine) and its genotoxic metabolites. Mol Pharmacol 85(3):520–530. doi:10.1124/mol.113.088823

    CAS  PubMed  Google Scholar 

  • von Richter O, Glavinas H, Krajcsi P, Liehner S, Siewert B, Zech K (2009) A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch Pharmacol 379(1):11–26. doi:10.1007/s00210-008-0345-0

    CAS  Google Scholar 

  • Vore M, Leggas M (2008) Progesterone acts via progesterone receptors A and B to regulate breast cancer resistance protein expression. Mol Pharmacol 73(3):613–615. doi:10.1124/mol.107.044289

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Nakagawa H, Tamura A, Koshiba S, Hoshijima K, Komada M, Ishikawa T (2007) Intramolecular disulfide bond is a critical check point determining degradative fates of ATP-binding cassette (ABC) transporter ABCG2 protein. J Biol Chem 282(38):27841–27846. doi:10.1074/jbc.C700133200

    CAS  PubMed  Google Scholar 

  • Wakabayashi-Nakao K, Tamura A, Furukawa T, Nakagawa H, Ishikawa T (2009) Quality control of human ABCG2 protein in the endoplasmic reticulum: ubiquitination and proteasomal degradation. Adv Drug Deliv Rev 61(1):66–72. doi:10.1016/j.addr.2008.08.008

    CAS  PubMed  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama S, Baba M (2003) Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 63(1):65–72

    CAS  PubMed  Google Scholar 

  • Wang H, Zhou L, Gupta A, Vethanayagam RR, Zhang Y, Unadkat JD, Mao Q (2006) Regulation of BCRP/ABCG2 expression by progesterone and 17beta-estradiol in human placental BeWo cells. Am J Physiol Endocrinol Metab 290(5):E798–E807. doi:10.1152/ajpendo.00397.2005

    CAS  PubMed  Google Scholar 

  • Wang H, Lee EW, Cai X, Ni Z, Zhou L, Mao Q (2008a) Membrane topology of the human breast cancer resistance protein (BCRP/ABCG2) determined by epitope insertion and immunofluorescence. Biochemistry 47(52):13778–13787. doi:10.1021/bi801644v

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Lee EW, Zhou L, Leung PC, Ross DD, Unadkat JD, Mao Q (2008b) Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol Pharmacol 73(3):845–854. doi:10.1124/mol.107.041087

    CAS  PubMed  Google Scholar 

  • Wang L, Leggas M, Goswami M, Empey PE, McNamara PJ (2008c) N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dih ydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918) as a chemical ATP-binding cassette transporter family G member 2 (Abcg2) knockout model to study nitrofurantoin transfer into milk. Drug Metab Dispos 36(12):2591–2596. doi:10.1124/dmd.108.021980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Xue X, Wei J, An Y, Yao J, Cai H, Wu J, Dai C, Qian Z, Xu Z, Miao Y (2010a) HSA-miR-520 h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer 103(4):567–574. doi:10.1038/sj.bjc.6605724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP, Poon RT, Fan ST (2010b) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52(2):528–539. doi:10.1002/hep.23692

    CAS  PubMed  Google Scholar 

  • Wang F, Liang YJ, Wu XP, Chen LM, To KK, Dai CL, Yan YY, Wang YS, Tong XZ, Fu LW (2011) Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia. Eur J Cancer 47(13):1990–1999. doi:10.1016/j.ejca.2011.03.032

    CAS  PubMed  Google Scholar 

  • Wang L, Gallo KA, Conrad SE (2013a) Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis. Oncotarget 4(8):1158–1171

    PubMed Central  PubMed  Google Scholar 

  • Wang ML, Chiou SH, Wu CW (2013b) Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther 6:1207–1220. doi:10.2147/OTT.S38114

    PubMed Central  PubMed  Google Scholar 

  • Wang QP, Wang Y, Wang XD, Mo XM, Gu J, Lu ZY, Pan ZL, Zhu YX (2013c) Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-kappaB expression in MCF-7/5-FU cells. Int J Biochem Cell Biol 45(9):2036–2044. doi:10.1016/j.biocel.2013.06.026

    CAS  PubMed  Google Scholar 

  • Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS (2013d) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis 4:e760. doi:10.1038/cddis.2013.272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe K, Nishida K, Yamato M, Umemoto T, Sumide T, Yamamoto K, Maeda N, Watanabe H, Okano T, Tano Y (2004) Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 565(1–3):6–10. doi:10.1016/j.febslet.2004.03.064

    CAS  PubMed  Google Scholar 

  • Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Cao B, Liu C, Wu G, Ao H, Zhang X, Jiang J (2013a) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA 110(17):6829–6834. doi:10.1073/pnas.1217002110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Y, Wu B, Jiang W, Yin T, Jia X, Basu S, Yang G, Hu M (2013b) Revolving door action of breast cancer resistance protein (BCRP) facilitates or controls the efflux of flavone glucuronides from UGT1A9-overexpressing HeLa cells. Mol Pharm 10(5):1736–1750. doi:10.1021/mp300562q

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2002) Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 87(11):5138–5143. doi:10.1210/jc.2002-020878

    CAS  PubMed  Google Scholar 

  • Weiss J, Rose J, Storch CH, Ketabi-Kiyanvash N, Sauer A, Haefeli WE, Efferth T (2007a) Modulation of human BCRP (ABCG2) activity by anti-HIV drugs. J Antimicrob Chemother 59(2):238–245. doi:10.1093/jac/dkl474

    CAS  PubMed  Google Scholar 

  • Weiss J, Theile D, Ketabi-Kiyanvash N, Lindenmaier H, Haefeli WE (2007b) Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab Dispos 35(3):340–344. doi:10.1124/dmd.106.012765

    CAS  PubMed  Google Scholar 

  • Wen PC, Verhalen B, Wilkens S, McHaourab HS, Tajkhorshid E (2013) On the origin of large flexibility of P-glycoprotein in the inward-facing state. J Biol Chem 288(26):19211–19220. doi:10.1074/jbc.M113.450114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf NS, Kone A, Priestley GV, Bartelmez SH (1993) In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 21(5):614–622

    CAS  PubMed  Google Scholar 

  • Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A 106(25):10338–10342. doi:10.1073/pnas.0901249106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, Rao A, Kottgen M, Maloney PC, Guggino WB (2013) Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci USA 110(13):5223–5228. doi:10.1073/pnas.1214530110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright JA, Haslam IS, Coleman T, Simmons NL (2011) Breast cancer resistance protein BCRP (ABCG2)-mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco-2) layers. Eur J Pharmacol 672(1–3):70–76. doi:10.1016/j.ejphar.2011.10.004

    CAS  PubMed  Google Scholar 

  • Xia CQ, Liu N, Yang D, Miwa G, Gan LS (2005) Expression, localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Drug Metab Dispos 33(5):637–643. doi:10.1124/dmd.104.003442

    CAS  PubMed  Google Scholar 

  • Xia CQ, Milton MN, Gan LS (2007) Evaluation of drug-transporter interactions using in vitro and in vivo models. Curr Drug Metab 8(4):341–363

    CAS  PubMed  Google Scholar 

  • Xiao Y, Davidson R, Smith A, Pereira D, Zhao S, Soglia J, Gebhard D, de Morais S, Duignan DB (2006) A 96-well efflux assay to identify ABCG2 substrates using a stably transfected MDCK II cell line. Mol Pharm 3(1):45–54

    CAS  PubMed  Google Scholar 

  • Xiao G, Black C, Hetu G, Sands E, Wang J, Caputo R, Rohde E, Gan LS (2012) Cerebrospinal fluid can be used as a surrogate to assess brain exposures of breast cancer resistance protein and P-glycoprotein substrates. Drug Metab Dispos 40(4):779–787. doi:10.1124/dmd.111.043703

    CAS  PubMed  Google Scholar 

  • Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K, Walker D, Lue LF, Stanimirovic D, Zhang W (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci 29(17):5463–5475. doi:10.1523/JNEUROSCI.5103-08.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS (2012) Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res 22(2):386–397. doi:10.1101/gr.124370.111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Liu Y, Yang Y, Bates S, Zhang JT (2004) Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J Biol Chem 279(19):19781–19789. doi:10.1074/jbc.M310785200

    CAS  PubMed  Google Scholar 

  • Yamagata T, Kusuhara H, Morishita M, Takayama K, Benameur H, Sugiyama Y (2007) Improvement of the oral drug absorption of topotecan through the inhibition of intestinal xenobiotic efflux transporter, breast cancer resistance protein, by excipients. Drug Metab Dispos 35(7):1142–1148. doi:10.1124/dmd.106.014217

    CAS  PubMed  Google Scholar 

  • Yamasaki Y, Ieiri I, Kusuhara H, Sasaki T, Kimura M, Tabuchi H, Ando Y, Irie S, Ware J, Nakai Y, Higuchi S, Sugiyama Y (2008) Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther 84(1):95–103. doi:10.1038/sj.clpt.6100459

    CAS  PubMed  Google Scholar 

  • Yang CH, Chen YC, Kuo ML (2003) Novobiocin sensitizes BCRP/MXR/ABCP overexpressing topotecan-resistant human breast carcinoma cells to topotecan and mitoxantrone. Anticancer Res 23(3B):2519–2523

    CAS  PubMed  Google Scholar 

  • Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, Chasman DI, Aspelund T, Eiriksdottir G, Harris TB, Launer L, Nalls M, Hernandez D, Arking DE, Boerwinkle E, Grove ML, Li M, Linda Kao WH, Chonchol M, Haritunians T, Li G, Lumley T, Psaty BM, Shlipak M, Hwang SJ, Larson MG, O’Donnell CJ, Upadhyay A, van Duijn CM, Hofman A, Rivadeneira F, Stricker B, Uitterlinden AG, Pare G, Parker AN, Ridker PM, Siscovick DS, Gudnason V, Witteman JC, Fox CS, Coresh J (2010) Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet 3(6):523–530. doi:10.1161/CIRCGENETICS.109.934455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JP, Liu Y, Zhong W, Yu D, Wen LJ, Jin CS (2011) Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma. Chin Med J (Engl) 124(7):1055–1060

    CAS  Google Scholar 

  • Yang J, Corsello TR, Ma Y (2012a) Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. J Biol Chem 287(3):1996–2005. doi:10.1074/jbc.M111.308734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Z, Zhu W, Gao S, Yin T, Jiang W, Hu M (2012b) Breast cancer resistance protein (ABCG2) determines distribution of genistein phase II metabolites: reevaluation of the roles of ABCG2 in the disposition of genistein. Drug Metab Dispos 40(10):1883–1893. doi:10.1124/dmd.111.043901

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yano S, Ito Y, Fujimoto M, Hamazaki TS, Tamaki K, Okochi H (2005) Characterization and localization of side population cells in mouse skin. Stem Cells 23(6):834–841. doi:10.1634/stemcells.2004-0226

    CAS  PubMed  Google Scholar 

  • Yasuda S, Itagaki S, Hirano T, Iseki K (2005) Expression level of ABCG2 in the placenta decreases from the mid stage to the end of gestation. Biosci Biotechnol Biochem 69(10):1871–1876

    CAS  PubMed  Google Scholar 

  • Yoshioka S, Katayama K, Okawa C, Takahashi S, Tsukahara S, Mitsuhashi J, Sugimoto Y (2007) The identification of two germ-line mutations in the human breast cancer resistance protein gene that result in the expression of a low/non-functional protein. Pharm Res 24(6):1108–1117. doi:10.1007/s11095-007-9235-2

    CAS  PubMed  Google Scholar 

  • Yu M, Ocana A, Tannock IF (2013) Reversal of ATP-binding cassette drug transporter activity to modulate chemoresistance: why has it failed to provide clinical benefit? Cancer Metastasis Rev 32(1–2):211–227. doi:10.1007/s10555-012-9402-8

    CAS  PubMed  Google Scholar 

  • Yuan S, Armour R, Reid A, Abdel-Rahman KF, Rumsey DM, Phillips M, Nester T (2005) Case report: massive postpartum transfusion of Jr(a+) red cells in the presence of anti-Jra. Immunohematology 21(3):97–101

    CAS  PubMed  Google Scholar 

  • Zaher H, Khan AA, Palandra J, Brayman TG, Yu L, Ware JA (2006) Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol Pharm 3(1):55–61

    CAS  PubMed  Google Scholar 

  • Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD, Schuetz EG (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13(1):19–28

    CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Hoffmaster KA, Humphreys JE, Tian X, Nezasa K, Brouwer KL (2006a) Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat. J Pharmacol Exp Ther 319(1):459–467. doi:10.1124/jpet.106.101840

    CAS  PubMed  Google Scholar 

  • Zamek-Gliszczynski MJ, Nezasa K, Tian X, Kalvass JC, Patel NJ, Raub TJ, Brouwer KL (2006b) The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol 70(6):2127–2133. doi:10.1124/mol.106.026955

    CAS  PubMed  Google Scholar 

  • Zelinski T, Coghlan G, Liu XQ, Reid ME (2012) ABCG2 null alleles define the Jr(a-) blood group phenotype. Nat Genet 44(2):131–132. doi:10.1038/ng.1075

    CAS  PubMed  Google Scholar 

  • Zeng H, Park JW, Guo M, Lin G, Crandall L, Compton T, Wang X, Li XJ, Chen FP, Xu RH (2009) Lack of ABCG2 expression and side population properties in human pluripotent stem cells. Stem Cells 27(10):2435–2445. doi:10.1002/stem.192

    CAS  PubMed  Google Scholar 

  • Zhai X, Wang H, Zhu X, Miao H, Qian X, Li J, Gao Y, Lu F, Wu Y (2012) Gene polymorphisms of ABC transporters are associated with clinical outcomes in children with acute lymphoblastic leukemia. Arch Med Sci 8(4):659–671. doi:10.5114/aoms.2012.30290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB (2003) The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J 17(14):2085–2087. doi:10.1096/fj.02-1131fje

    PubMed  Google Scholar 

  • Zhang S, Yang X, Morris ME (2004) Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res 21(7):1263–1273

    CAS  PubMed  Google Scholar 

  • Zhang W, Yu BN, He YJ, Fan L, Li Q, Liu ZQ, Wang A, Liu YL, Tan ZR, Fen J, Huang YF, Zhou HH (2006) Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta Int J Clin Chem 373(1–2):99–103. doi:10.1016/j.cca.2006.05.010

    CAS  Google Scholar 

  • Zhang Y, Wang H, Unadkat JD, Mao Q (2007) Breast cancer resistance protein 1 limits fetal distribution of nitrofurantoin in the pregnant mouse. Drug Metab Dispos 35(12):2154–2158. doi:10.1124/dmd.107.018044

    CAS  PubMed  Google Scholar 

  • Zhang W, Li J, Allen SM, Weiskircher EA, Huang Y, George RA, Fong RG, Owen A, Hidalgo IJ (2009) Silencing the breast cancer resistance protein expression and function in caco-2 cells using lentiviral vector-based short hairpin RNA. Drug Metab Dispos 37(4):737–744. doi:10.1124/dmd.108.023309

    CAS  PubMed  Google Scholar 

  • Zhang FL, Shen GM, Liu XL, Wang F, Zhao HL, Yu J, Zhang JW (2011) Hypoxic induction of human erythroid-specific delta-aminolevulinate synthase mediated by hypoxia-inducible factor 1. Biochemistry 50(7):1194–1202. doi:10.1021/bi101585c

    CAS  PubMed  Google Scholar 

  • Zhang L, Spencer KL, Voruganti VS, Jorgensen NW, Fornage M, Best LG, Brown-Gentry KD, Cole SA, Crawford DC, Deelman E, Franceschini N, Gaffo AL, Glenn KR, Heiss G, Jenny NS, Kottgen A, Li Q, Liu K, Matise TC, North KE, Umans JG, Kao WH (2013) Association of functional polymorphism rs2231142 (Q141K) in the ABCG2 gene with serum uric acid and gout in 4 US populations: the PAGE study. Am J Epidemiol. doi:10.1093/aje/kws330

    Google Scholar 

  • Zhao L, Pan Y, Gang Y, Wang H, Jin H, Tie J, Xia L, Zhang Y, He L, Yao L, Qiao T, Li T, Liu Z, Fan D (2009a) Identification of GAS1 as an epirubicin resistance-related gene in human gastric cancer cells with a partially randomized small interfering RNA library. J Biol Chem 284(39):26273–26285. doi:10.1074/jbc.M109.028068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao R, Raub TJ, Sawada GA, Kasper SC, Bacon JA, Bridges AS, Pollack GM (2009b) Breast cancer resistance protein interacts with various compounds in vitro, but plays a minor role in substrate efflux at the blood-brain barrier. Drug Metab Dispos 37(6):1251–1258. doi:10.1124/dmd.108.025064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034. doi:10.1038/nm0901-1028

    CAS  PubMed  Google Scholar 

  • Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 99(19):12339–12344. doi:10.1073/pnas.192276999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou S, Zong Y, Lu T, Sorrentino BP (2003) Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 35(6):1248–1252

    CAS  PubMed  Google Scholar 

  • Zhou S, Zong Y, Ney PA, Nair G, Stewart CF, Sorrentino BP (2005) Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 105(6):2571–2576. doi:10.1182/blood-2004-04-1566

    CAS  PubMed  Google Scholar 

  • Zhou L, Naraharisetti SB, Wang H, Unadkat JD, Hebert MF, Mao Q (2008) The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse: an Obstetric-Fetal Pharmacology Research Unit Network and University of Washington Specialized Center of Research Study. Mol Pharmacol 73(3):949–959. doi:10.1124/mol.107.041616

    CAS  PubMed  Google Scholar 

  • Zhou L, Schmidt K, Nelson FR, Zelesky V, Troutman MD, Feng B (2009) The effect of breast cancer resistance protein and P-glycoprotein on the brain penetration of flavopiridol, imatinib mesylate (Gleevec), prazosin, and 2-methoxy-3-(4-(2-(5-methyl-2-phenyloxazol-4-yl)ethoxy)phenyl)propanoic acid (PF-407288) in mice. Drug Metab Dispos 37(5):946–955. doi:10.1124/dmd.108.024489

    CAS  PubMed  Google Scholar 

  • Zhou Q, Ruan ZR, Yuan H, Xu DH, Zeng S (2013a) ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c > A are determinants of inter-subject variability in rosuvastatin pharmacokinetics. Pharmazie 68(2):129–134

    CAS  PubMed  Google Scholar 

  • Zhou S, Liao L, Chen C, Zeng W, Liu S, Su J, Zhao S, Chen M, Kuang Y, Chen X, Li J (2013b) CD147 mediates chemoresistance in breast cancer via ABCG2 by affecting its cellular localization and dimerization. Cancer Lett 337(2):285–292. doi:10.1016/j.canlet.2013.04.025

    CAS  PubMed  Google Scholar 

  • Zhu W, Xu H, Wang SW, Hu M (2010) Breast cancer resistance protein (BCRP) and sulfotransferases contribute significantly to the disposition of genistein in mouse intestine. AAPS J 12 (4):525–536. doi:10.1208/s12248-010-9209-x

Download references

Acknowledgments

Contribution from Ms Tímea Rosta in the preparation of this manuscript is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Krajcsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jani, M., Ambrus, C., Magnan, R. et al. Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 88, 1205–1248 (2014). https://doi.org/10.1007/s00204-014-1224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1224-8

Keywords

Navigation