Skip to main content
Log in

Prospects of probiotics in beekeeping: a review for sustainable approach to boost honeybee health

  • Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the available data is been provided in this manuscript only.

References

  • Abdi K, Ben Said M, Crotti E, Masmoudi AS, Cherif A (2023) The promise of probiotics in honeybee health and disease management. Arch Microbiol 205(2):73

    Article  CAS  PubMed  Google Scholar 

  • Agarwal R, Bansal A, Saini AS, Raj A, Kumar A, Gharde SK (2023) Bee nutrition and artificial food. Pharma Innov J 12(6):1635–1641

    CAS  Google Scholar 

  • Aizen MA, Harder LD (2009) The global stock of domesticated honeybees is growing slower than agricultural demand for pollination. Curr Biol 19(11):915–918

    Article  CAS  PubMed  Google Scholar 

  • Alberoni D, Gaggìa F, Baffoni L, Di Gioia D (2016) Beneficial microorganisms for honeybees: problems and progresses. Appl Microbiol Biotechnol 100:9469–9482

    Article  CAS  PubMed  Google Scholar 

  • Almasri H, Liberti J, Brunet JL, Engel P, Belzunces LP (2022) Mild chronic exposure to pesticides alters physiological markers of honeybee health without perturbing the core gut microbiota. Sci Rep 12(1):4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KE, Ricigliano VA (2017) Honeybee gut dysbiosis: a novel context of disease ecology. Curr Opin Insect Sci 22:125–132

    Article  PubMed  Google Scholar 

  • Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honeybees (Apis mellifera). PLoS ONE 8(12):e83125

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson KE, Rodrigues PA, Mott BM, Maes P, Corby-Harris V (2016) Ecological succession in the honeybee gut: shift in Lactobacillus strain dominance during early adult development. Microb Ecol 71:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Anderson KE, Allen NO, Copeland DC, Kortenkamp OL, Erickson R, Mott BM, Oliver R (2024) A longitudinal field study of commercial honeybees shows that non-native probiotics do not rescue antibiotic treatment and are generally not beneficial. Sci Rep 14(1):1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbia A, Babbay BJJOE (2011) Management strategies of honeybee diseases. J Entomol 8(1):1–15

    Article  Google Scholar 

  • Audisio MC (2017) Gram-positive bacteria with probiotic potential for the Apis mellifera L. honeybee: the experience in the northwest of Argentina. Probiotics Antimicrob Prot 9:22–31

    Article  CAS  Google Scholar 

  • Audisio M, Benítez-Ahrendts M (2011) Lactobacillus johnsonii CRL1647 isolated from Apis mellifera L bee-gut exhibited a beneficial effect on honeybee colonies. Benef Microbes 2(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L bee-gut. Microbiol Res 166(1):1–13

    Article  Google Scholar 

  • Bertazzini M, Medrzycki P, Bortolotti L, Maistrello L, Forlani G (2010) Amino acid content and nectar choice by forager honeybees (Apis mellifera L.). Amino Acids 39:315–318

    Article  CAS  PubMed  Google Scholar 

  • Besharati M, Bavand R, Paya H, Lackner M (2024) Comparative effect of probiotic and antibiotic on honeybee’s colony functional traits. EuroBiotech J 8(1):1–11

    Article  Google Scholar 

  • Bonilla-Rosso G, Engel P (2018) Functional roles and metabolic niches in the honeybee gut microbiota. Curr Opin Microbiol 43:69–76

    Article  CAS  PubMed  Google Scholar 

  • Borges D, Guzman-Novoa E, Goodwin PH (2021) Effects of prebiotics and probiotics on honeybees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9(3):481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown A, Rodriguez V, Pfister J, Perreten V, Neumann P, Retschnig G (2022) The dose makes the poison: feeding of antibiotic-treated winter honeybees, Apis mellifera, with probiotics and b-vitamins. Apidologie 53(2):19

    Article  CAS  Google Scholar 

  • Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, Romano D, Borin S, Tsiamis G, Cherif A, Alma A (2021) Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. Npj Biofilms Microb 7(1):42. https://doi.org/10.1038/s41522-021-00212-9

    Article  Google Scholar 

  • Chen J, Wang J, Zheng H (2021) Characterization of Bifidobacterium apousia sp. Nov., Bifidobacterium choladohabitans sp. nov., and Bifidobacterium polysaccharolyticum sp. Nov., three novel species of the genus Bifidobacterium from honeybee gut. Syst Appl Microbiol 44(5):126247

    Article  CAS  PubMed  Google Scholar 

  • Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honeybee (Apis mellifera) foragers. PLoS ONE 9(4):e95056

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornara L, Biagi M, Xiao J, Burlando B (2017) Therapeutic properties of bioactive compounds from different honeybee products. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00412

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa A, Veca M, Barberis M, Tosti A, Notaro G, Nava S, Lazzari M, Agazzi A, Tangorra FM (2018) Heavy metals on honeybees indicate their concentration in the atmosphere a proof of concept. Italian J Anim Sci. https://doi.org/10.1080/1828051X.2018.1520052

    Article  Google Scholar 

  • Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G (2020a) Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol 28(12):1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Daisley BA, Pitek AP, Chmiel JA, Al KF, Chernyshova AM, Faragalla KM, Burton JP, Thompson GJ, Reid G (2020b) Novel probiotic approach to counter Paenibacillus larvae infection in honeybees. ISME J 14(2):476–491

    Article  CAS  PubMed  Google Scholar 

  • Daisley BA, Pitek AP, Chmiel JA, Gibbons S, Chernyshova AM, Al KF, Faragalla KM, Burton JP, Thompson GJ, Reid G (2020c) Lactobacillus spp attenuate antibiotic-induced immune and microbiota dysregulation in honeybees. Commun Biol 3(1):534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daisley BA, Pitek AP, Torres C, Lowery R, Adair BA, Al KF, Niño B, Burton JP, Allen-Vercoe E, Thompson GJ, Reid G (2023) Delivery mechanism can enhance probiotic activity against honeybee pathogens. ISME J 17:1–14

    Article  Google Scholar 

  • Damico ME, Beasley B, Greenstein D, Raymann K (2023) Testing the effectiveness of a commercially sold probiotic on restoring the gut microbiota of honeybees: a field study. Probiotics Antimicrob Proteins 1–10: https://doi.org/10.1007/s12602-023-10203-1

    Article  CAS  Google Scholar 

  • Danner N, Keller A, Härtel S, Steffan-Dewenter I (2017) Honeybee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE 12(8):e0183716

    Article  PubMed  PubMed Central  Google Scholar 

  • Decanini LI, Collins AM, Evans JD (2007) Variation and heritability in immune gene expression by diseased honeybees. J Hered 98(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Dong ZX, Li HY, Chen YF, Wang F, Deng XY, Lin LB, Zhang QL, Li JL, Guo J (2020) Colonization of the gut microbiota of honeybee (Apis mellifera) workers at different developmental stages. Microbiol Res 231:126370

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Zhao BA, Jin X, Cheng X, Huang S, Li J (2021) Antibiotic treatment decreases the fitness of honeybee (Apis mellifera) larvae. InsEcts 12(4):301

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SG, Vásquez A (2015) Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genom 16(1):1–22

    Article  CAS  Google Scholar 

  • Emery O, Schmidt K, Engel P (2017) Immune system stimulation by the gut symbiont Frischella perrara in the honeybee (Apis mellifera). Mol Ecol 26(9):2576–2590

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36(6):444–448

    Article  PubMed  Google Scholar 

  • Engel P, Bartlett KD, Moran NA (2015) The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. Mbio 6(3):10–1128

    Article  Google Scholar 

  • Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honeybee (Hymenoptera: Apidae). J Econ Entomol 97(3):752–756

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honeybee health. Trends Microbiol 19(12):614–620

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honeybees Apis mellifera. Insect Mol Biol 15(5):645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanciotti MN, Tejerina M, Benítez-Ahrendts MR, Audisio MC (2018) Honey yield of different commercial apiaries treated with Lactobacillus salivarius A3iob, a new bee-probiotic strain. Benef Microbes 9(2):291–298

    Article  CAS  PubMed  Google Scholar 

  • Favaro R, Garrido PM, Bruno D, Braglia C, Alberoni D, Baffoni L, Tettamanti G, Porrini MP, Di Gioia D, Angeli S (2023) Combined effect of a neonicotinoid insecticide and a fungicide on honeybee gut epithelium and microbiota, adult survival, colony strength and foraging preferences. Sci Total Environ 905:167277

    Article  CAS  PubMed  Google Scholar 

  • Forsgren E (2010) European foulbrood in honeybees. J Invertebr Pathol 103:S5–S9

    Article  PubMed  Google Scholar 

  • García-Vicente EJ, Martín M, Rey-Casero I, Pérez A, Martínez R, Bravo M, Alonso JM, Risco D (2023) Effect of feed supplementation with probiotics and postbiotics on strength and health status of honeybee (Apis mellifera) hives during late spring. Res Vet Sci 159:237–243

    Article  PubMed  Google Scholar 

  • Goderska K, Nowak J, Czarnecki Z (2008) Comparision of growth of Lactobacillus acidophilus and Bifidobacterium Bifidum species in media suplemented with selected saccharides including prebiotics. Acta Scientiarum Polonorum Technologia Alimentaria 7(2):5–20

    CAS  Google Scholar 

  • Hasan A, Qazi JI, Muzaffer N, Jabeen S, Hussain A (2022) Effect of organic acids and probiotics on growth of Apis mellifera workers. Pak J Zool 54(6):2577

    Article  CAS  Google Scholar 

  • Hassan AAM, Elenany YE (2023) Influence of probiotics feed supplementation on hypopharyngeal glands morphometric measurements of honeybee workers Apis mellifera L. Probiotics and Antimicrobial Proteins 1–7. https://doi.org/10.1007/s12602-023-10107-0

    Article  CAS  Google Scholar 

  • Hoover SE, Ovinge LP (2018) Pollen collection, honey production, and pollination services: managing honeybees in an agricultural setting. J Econ Entomol 111(4):1509–1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss MZ, Poulain AJ, Forrest JR (2022) Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuab056

    Article  PubMed  Google Scholar 

  • Huang YH, Chen YH, Chen JH, Hsu PS, Wu TH, Lin CF, Peng CC, Wu MC (2021) A potential probiotic Leuconostoc mesenteroides TBE-8 for honeybee. Sci Rep 11(1):18466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Pannella G, Lombardi SJ, Ganassi S, Testa B, Succi M, Sorrentino E, Petrarca S, De Cristofaro A, Coppola R, Tremonte P (2020) Inter-and intra-species diversity of lactic acid bacteria in Apis mellifera ligustica colonies. Microorganisms 8(10):1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorizzo M, Letizia F, Ganassi S, Testa B, Petrarca S, Albanese G, Di Criscio D, De Cristofaro A (2022) Functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honeybees. InsEcts 13(3):308

    Article  PubMed  PubMed Central  Google Scholar 

  • Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA (2016) Honeybee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 7:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, Robinson GE (2015) Caste-specific differences in hindgut microbial communities of honeybees (Apis mellifera). PLoS ONE 10(4):e0123911

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaznowski A, Szymas B, Jazdzinska E, Kazimierczak M, Paetz H, Mokracka J (2005) The effects of probiotic supplementation on the content of intestinal microflora and chemical composition of worker honeybees (Apis mellifera). J Apic Res 44(1):10–14

    Article  Google Scholar 

  • Klassen SS, VanBlyderveen W, Eccles L, Kelly PG, Borges D, Goodwin PH, Petukhova T, Wang Q, Guzman-Novoa E (2021) Nosema ceranae infections in honeybees (Apis mellifera) treated with pre/probiotics and impacts on colonies in the field. Vet Sci 8(6):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Abrol DP, Sharma D, Vikram US, Singh AK (2021) Impact of artificial diets on performance of Apis mellifera colonies during dearth periods. J Entomol Zool Stud 9(3):404–409

    Google Scholar 

  • Kurek-Górecka A, Górecki M, Rzepecka-Stojko A, Balwierz R, Stojko J (2020) Bee products in dermatology and skin care. Molecules 25(3):556

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwakman PH, Velde AAT, de Boer L, Speijer D, Christina Vandenbroucke-Grauls MJ, Zaat SA (2010) How honey kills bacteria. FASEB J 24(7):2576–2582

    Article  CAS  PubMed  Google Scholar 

  • Kwakman PH, Te Velde AA, de Boer L, Vandenbroucke-Grauls CM, Zaat SA (2011) Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS ONE 6(3):e17709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14(6):374–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host specialization of honeybee and bumble bee gut symbionts. Proc Natl Acad Sci 111(31):11509–11514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong WK, Mancenido AL, Moran NA (2017) Immune system stimulation by the native gut microbiota of honeybees. R Soc Open Sci 4(2):170003

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakhman AR, Galatiuk OY, Romanishina TA, Chirta-Sinelnyk KO, Behas VL, Zilko OY (2021) Effect of “EM® probiotic for bees” on the dynamic’s viability of bee in an entomological cage experiment scientific messenger of LNU of veterinary medicine and biotechnologies. Ser Vet Sci 23(103):27–34

    Google Scholar 

  • Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton IL (2015) Saccharide breakdown and fermentation by the honeybee gut microbiome. Environ Microbiol 17(3):796–815

    Article  CAS  PubMed  Google Scholar 

  • Leger L, McFrederick QS (2020) The gut–brain–microbiome axis in bumble bees. InsEcts 11(8):517

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JH, Evans JD, Li WF, Zhao YZ, DeGrandi-Hoffman G, Huang SK, Li ZG, Hamilton M, Chen YP (2017) New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honeybee’s vulnerability to Nosema infection. PLoS ONE 12(11):e0187505

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Heerman MC, Evans JD, Rose R, Li W, Rodríguez-García C, DeGrandi-Hoffman G, Zhao Y, Huang S, Li Z, Hamilton M (2019) Pollen reverses decreased lifespan, altered nutritional metabolism, and suppressed immunity in honeybees (Apis mellifera) treated with antibiotics. J Exp Biol 222(7):jeb202077

    Article  PubMed  Google Scholar 

  • Liao CH, Shollenberger LM (2003) Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Lett Appl Microbiol 37(1):45–50

    Article  PubMed  Google Scholar 

  • Liu YJ, Qiao NH, Diao QY, Jing Z, Vukanti R, Dai PL, Ge Y (2020) Thiacloprid exposure perturbs the gut microbiota and reduces the survival status in honeybees. J Hazard Mater 389:121818

    Article  CAS  PubMed  Google Scholar 

  • Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG (2019) Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol 28(4):721–730

    Article  PubMed  Google Scholar 

  • Ludvigsen J, Rangberg A, Avershina E, Sekelja M, Kreibich C, Amdam G, Rudi K (2015) Shifts in the midgut/pyloric microbiota composition within a honeybee apiary throughout a season. Microbes Environ 30(3):235–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Maes PW, Rodrigues PA, Oliver R, Mott BM, Anderson KE (2016) Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol Ecol 25(21):5439–5450

    Article  CAS  PubMed  Google Scholar 

  • Maggi M, Negri P, Plischuk S, Szawarski N, De Piano F, De Feudis L, Eguaras M, Audisio C (2013) Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet Microbiol 167(3–4):474–483

    Article  CAS  PubMed  Google Scholar 

  • Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78(8):2830–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruščáková IC, Schusterová P, Bielik B, Toporčák J, Bíliková K, Mudroňová D (2020) Effect of application of probiotic pollen suspension on immune response and gut microbiota of honeybees (Apis mellifera). Probiotics Antimicrobial Prot 12:929–936

    Article  Google Scholar 

  • Melliou E, Chinou I (2014) Chemistry and bioactivities of royal jelly. Stud Nat Prod Chem 43:261–290

    Article  CAS  Google Scholar 

  • Mishukovskaya G, Giniyatullin M, Tuktarov V, Khabirov A, Khaziahmetov F, Naurazbaeva A (2020) Effect of probiotic feed additives on honeybee colonies overwintering. Am J Anim Vet Sci 15(4):284–290

    Article  Google Scholar 

  • Mishukovskaya G, Giniyatullin M, Shelekhov D, Khabirov A, Smolnikova E, Naurazbaeva A (2023) The use of probiotics in spring supplementary feeding of bee colonies. Bul J Agric Sci 29(1):131–137

    Google Scholar 

  • Molloy MJ, Bouladoux N, Belkaid Y (2012) Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 24(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive gut microbiota of honeybees assessed using deep sampling from individual worker bees. PLoS ONE 7(4):e36393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motta EV, Raymann K, Moran NA (2018) Glyphosate perturbs the gut microbiota of honeybees. Proc Natl Acad Sci 115(41):10305–10310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motta EV, Mak M, De Jong TK, Powell JE, O’Donnell A, Suhr KJ, Riddington IM, Moran NA (2020) Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honeybees. Appl Environ Microbiol 86(18):e01150-e1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray KD, Aronstein KA (2006) Oxytetracycline-resistance in the honeybee pathogen Paenibacillus larvae is encoded on novel plasmid pMA67. J Apic Res 45(4):207–214

    Article  CAS  Google Scholar 

  • Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, Hamanaka RB, Niğdelioğlu R, Meliton AY, Ghio AJ, Budinger GS (2018) Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut 240:817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolson SW (2011) Bee food: the chemistry and nutritional value of nectar, pollen, and mixtures of the two. Afr Zool 46(2):197–204

    Article  Google Scholar 

  • Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D (2021) Characterization of Apis mellifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection—a review. Cells 10(3):701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Alvarado Y, Clark DR, Vega-Melendez CJ, Flores-Cruz Z, Domingez-Bello MG, Giray T (2020) Antibiotics in hives and their effects on honeybee physiology and behavioral development. Biol Open 9(11):bio053884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmashree I, Roseleen SSJ, Justin CGL, Ejilane J (2020) Effect of probiotic supplement on the disease management and brood development of the Indian honeybee, Apis cerana indica F (Hymenoptera: Apidae). J Entomol Zool Studies 8(3):496–500

    Google Scholar 

  • Paray BA, Kumari I, Hajam YA, Sharma B, Kumar R, Albeshr MF, Farah MA, Khan JM (2021) Honeybee nutrition and pollen substitutes: a review. Saudi J Biol Sci 28(1):1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Pascale A, Marchesi N, Marelli C, Coppola A, Luzi L, Govoni S, Giustina A, Gazzaruso C (2018) Microbiota and metabolic diseases. Endocrine 61:357–371

    Article  CAS  PubMed  Google Scholar 

  • Pătruică S, Mot D (2012) The effect of using prebiotic and probiotic products on intestinal micro-flora of the honeybee (Apis mellifera carpatica). Bull Entomol Res 102(6):619–623

    Article  PubMed  Google Scholar 

  • Pătruică S, Dumitrescu G, Popescu R, Filimon NM (2013) The effect of prebiotic and probiotic products used in feed to stimulate the bee colony (Apis mellifera) on intestines of working bees. J Food Agric Environ 11(3&4):2461–2464

    Google Scholar 

  • Pernice M, Simpson SJ, Ponton F (2014) Towards an integrated understanding of gut microbiota using insects as model systems. J Insect Physiol 69:12–18

    Article  CAS  PubMed  Google Scholar 

  • Piva S, Giacometti F, Marti E, Massella E, Cabbri R, Galuppi R, Serraino A (2020) Could honeybees signal the spread of antimicrobial resistance in the environment? Lett Appl Microbiol 70(5):349–355

    Article  CAS  PubMed  Google Scholar 

  • Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honeybee Apis mellifera. Appl Environ Microbiol 80(23):7378–7387

    Article  PubMed  PubMed Central  Google Scholar 

  • Ptaszyńska AA, Borsuk G, Zdybicka-Barabas A, Cytryńska M, Małek W (2016) Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitol Res 115:397–406

    Article  PubMed  Google Scholar 

  • Raymann K, Moran NA (2018) The role of the gut microbiome in health and disease of adult honeybee workers. Curr Opin Insect Sci 26:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Raymann K, Shaffer Z, Moran NA (2017) Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol 15(3):e2001861

    Article  PubMed  PubMed Central  Google Scholar 

  • Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH (2022a) Metabolomics-guided comparison of pollen and microalgae-based artificial diets in honeybees. J Agric Food Chem 70(31):9790–9801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricigliano VA, Williams ST, Oliver R (2022b) Effects of different artificial diets on commercial honeybee colony performance, health biomarkers, and gut microbiota. BMC Vet Res 18(1):1–14

    Article  Google Scholar 

  • Rothman JA, Leger L, Kirkwood JS, McFrederick QS (2019) Cadmium and selenate exposure affects the honeybee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Appl Environ Microbiol 85(21):e01411-e1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouzé R, Moné A, Delbac F, Belzunces L, Blot N (2019) The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae. Microbes Environ 34(3):226–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Royan M, Rahimi G, Esmaeilkhanian S, Mirhoseini SZ, Ansari Z (2007) A study on the genetic diversity of the Apis mellifera meda population in the south coast of the caspian sea using microsatellite markers. J Apic Res 46(4):236–241

    Article  CAS  Google Scholar 

  • Royan M (2019) Mechanisms of probiotic action in the honeybee. Critical Reviews™ in Eukaryotic Gene Exprssion 29(2):95–103

    Article  Google Scholar 

  • Sabate DC, Cruz MS, Benítez-Ahrendts MR, Audisio MC (2012) Beneficial effects of Bacillus subtilis subsp. subtilis Mori2, a honey-associated strain, on honeybee colony performance. Probiotics Antimicrobial Prot 4:39–46

    Article  CAS  Google Scholar 

  • Schwarz RS, Moran NA, Evans JD (2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honeybee workers. Proc Natl Acad Sci 113(33):9345–9350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Syrenne R, Sun JZ, Yuan JS (2010) Molecular approaches to study the insect gut symbiotic microbiota at the “omics” age. Insect Sci 17(3):199–219

    Article  CAS  Google Scholar 

  • Sihag RC (1986) Insect pollination increases seed production in cruciferous and umbelliferous crops. J Apic Res 25(2):121–126

    Article  Google Scholar 

  • Silva MS, Rabadzhiev Y, Eller MR, Iliev I, Ivanova I, Santana WC (2017) Microorganisms in Honey. Honey Anal 500:233–257

    Google Scholar 

  • Singh P, Singh K, Shahi B (2016) Role of honeybee pollination in quality seed production of cauliflower for scalingup of livelihood in Vaishali district of Bihar. In J Agri Search 3(2):23.28. Society for Upliftment of Rural Economy (SURE) https://doi.org/10.21921/jas.v3i2.11271

  • Smutin D, Lebedev E, Selitskiy M, Panyushev N, Adonin L (2022) Micro” bee” ota: honeybee normal microbiota as a part of superorganism. Microorganisms 10(12):2359

    Article  PubMed  PubMed Central  Google Scholar 

  • Sokolova E, Mager S, Grizanova E, Kalmykova G, Akulova N, Dubovskiy I (2022) Stimulation effect of probiotic bacteria Bacillus spp. and inactivated yeast on the honeybees Apis mellifera physiology and honey productivity. Invertebr Survival J 19(1):85–90

    Google Scholar 

  • Tarpy DR, Mattila HR, Newton IL (2015) Development of the honeybee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol 81(9):3182–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian B, Fadhil NH, Powell JE, Kwong WK, Moran NA (2012) Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. Mbio 3(6):10–1128

    Article  Google Scholar 

  • Tlak Gajger I, Vlainić J, Šoštarić P, Prešern J, Bubnič J, Smodiš Škerl MI (2020) Effects on some therapeutical, biochemical, and immunological parameters of honeybee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. InsEcts 11(9):638

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasik PJ, Tomasik P (2003) Probiotics and prebiotics. Cereal Chem 80(2):113–117

    Article  CAS  Google Scholar 

  • Ullah A, Gajger IT, Majoros A, Dar SA, Khan S, Shah AH, Khabir MN, Hussain R, Khan HU, Hameed M, Anjum SI (2021a) Viral impacts on honeybee populations: a review. Saudi J Biol Sci 28(1):523–530

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Shahzad MF, Iqbal J, Baloch MS (2021b) Nutritional effects of supplementary diets on brood development, biological activities, and honey production of Apis mellifera L. Saudi J Biol Sci 28(12):6861–6868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentini M, Piermattei A, Di Sante G, Migliara G, Delogu G, Ria F (2014) Immunomodulation by gut microbiota: role of Toll-like receptor expressed by T cells. J Immunol Res. https://doi.org/10.1155/2014/586939

    Article  PubMed  PubMed Central  Google Scholar 

  • Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS ONE 7(3):e33188

    Article  PubMed  PubMed Central  Google Scholar 

  • Vernier CL, Chin IM, Adu-Oppong B, Krupp JJ, Levine J, Dantas G, Ben-Shahar Y (2020) The gut microbiome defines social group membership in honeybee colonies. Sci Adv 6(42):eabd3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezeteu TV, Bobiş O, Moritz RF, Buttstedt A (2017) Food to some, poison to others-honeybee royal jelly and its growth inhibiting effect on European Foulbrood bacteria. Microbiol Open 6(1):e00397

    Article  Google Scholar 

  • Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 6(6):e21550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang L, Fan X, Yu C, Feng L, Yi L (2020) An insight into diversity and functionalities of gut microbiota in insects. Curr Microbiol 77:1976–1986

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li J, Zhao L, Mu X, Wang C, Wang M, Xue X, Qi S, Wu L (2021) Gut microbiota protects honeybees (Apis mellifera L) against polystyrene microplastics exposure risks. J Hazard Mater 402:123828

    Article  CAS  PubMed  Google Scholar 

  • Westfall S, Lomis N, Prakash S (2018) Longevity extension in Drosophila through gut-brain communication. Sci Rep 8(1):8362

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Sugimura Y, Iwata K, Takaya N, Takamatsu D, Kobayashi M, Taylor D, Kimura K, Yoshiyama M (2014) Inhibitory effect of gut bacteria from the Japanese honeybee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. J Insect Sci 14(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Han B, Wang X, Tong Y, Liu F, Diao Q, Dai P (2022) Chlorothalonil alters the gut microbiota and reduces the survival of immature honeybees reared in vitro. Pest Manag Sci 78(5):1976–1981

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Li X, Yang F, Zhou B (2023) Beneficial bacteria as biocontrol agents for American foulbrood disease in honeybees (Apis mellifera). J Insect Sci 23(2):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Yiu JH, Dorweiler B, Woo CW (2017) Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. J Mol Med 95(1):13–20

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama M, Kimura K (2009) Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebr Pathol 102(2):91–96

    Article  PubMed  Google Scholar 

  • Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, Moran NA (2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. Mbio 7(6):10–1128

    Article  Google Scholar 

  • Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci 114(18):4775–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Qi S, Xue X, Niu X, Wu L (2020) Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honeybee (Apis mellifera L). Environ Pollut 258:113671

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks Department of Biosciences (UIBT) and Department of Agriculture (UIAS) for the excellent infrastructural support.

Funding

No funding was available for this work.

Author information

Authors and Affiliations

Authors

Contributions

S has made a substantial contribution to the design/writing of this manuscript, its analysis and data interpretation. 2. AR along with GS drafted the article and revised it critically for important intellectual content; 3. AR and GG finally approved the version to be published.

Corresponding author

Correspondence to Anita Rana.

Ethics declarations

Conflict of interest

The authors declare that there is no known competing financial interest or personal relationship that could have appeared to influence the work in this manuscript.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smriti, Rana, A., Singh, G. et al. Prospects of probiotics in beekeeping: a review for sustainable approach to boost honeybee health. Arch Microbiol 206, 205 (2024). https://doi.org/10.1007/s00203-024-03926-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-024-03926-4

Keywords

Navigation