Skip to main content
Log in

Transcriptomic analysis approach towards an improved tolerance of Escherichia coli to gallic acid stress

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

As a natural green additive, gallic acid has been widely used in food production. However, it can inhibit the physiological metabolism of Escherichia coli, which severely limits the ability and efficiency of gallic acid production. To explore the adaptation mechanism of E. coli under gallic acid stress and further explore the target of genetic modification, the effects of gallic acid stress on the fermentation characteristics of E. coli W3110 ATCC (82057) were investigated by cell biomass and cell morphometry. Moreover, transcriptome analysis was used to analyze the gene transcription level of E. coli W3110 ATCC (82057) to explore effects of gallic acid stress on important essential physiological processes. The results showed that under high concentration of gallic acid, the biomass of E. coli W3110 ATCC (82057) decreased significantly and the cells showed irregular morphology. Transcriptome analysis showed that E. coli W3110 ATCC (82057) improved its adaptive capacity through three strategies. First, genes of bamD, ompC, and ompF encoding outer membrane protein BamD, OmpC, and OmpC were decreased 5-, 31.1- and 8.1-fold, respectively, under gallic acid stress compared to the control, leading to the reduction of gallic acid absorption. Moreover, genes (mdtA, mdtB, mdtC, mdtD, mdtE, and mdtF) related to MdtABC multidrug efflux system and multidrug efflux pump MdtEF were up-regulated by1.0–53.0 folds, respectively, and genes (aaeA, aaeB, and aaeX) related to AaeAB efflux system were up-regulated by 8.0–13.3 folds, respectively, which contributed to the excretion of gallic acid. In addition, genes of acid fitness island also were up-regulated by different degrees under the stress of an acidic environment to maintain the stability of the intracellular environment. In conclusion, E. coli W3110 ATCC (82057) would enhance its tolerance to gallic acid by reducing absorption, increasing excretion, and maintaining intracellular environment stability. This study provides research ideas for the construction of engineered strains with high gallic acid yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aiso T, Kamiya S, Yonezawa H, Gamou S (2014) Overexpression of an antisense RNA, ArrS, increases the acid resistance of Escherichia coli. Microbiology 160:954–961

    Article  PubMed  CAS  Google Scholar 

  • Atzori A, Malloci G, Cardamone F, Bosin A, Ruggerone P (2020) Molecular interactions of carbapenem antibiotics with the multidrug efflux transporter AcrB of Escherichia coli. Int J Mol Sci 21:860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bafna JA, Sans-Serramitjana E, Acosta-Gutierrez S, Bodrenko IV, Ceccarelli M (2020) Kanamycin uptake into Escherichia coli is facilitated by OmpF and OmpC porin channels located in the outer membrane. ACS Infect Dis 6(7):1855–1865

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee A, Chetri S, Bhowmik D (2019) Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res Notes 12:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas R, Halder U, Kabiraj A, Mondal A, Bandopadhyay R (2021) Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Arch Microbiol 203:2761–2770

    Article  PubMed  CAS  Google Scholar 

  • Buchmann D, Schultze N, Borchardt J, Bttcher I, Schaufler K, Guenther S (2022) Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens. J Appl Microbiol 132(2):949–963

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Shen X, Wang J, Wang J, Yuan Q, Yan Y (2017) Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway. Biotechnol Bioeng 114:2571–2580

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhang Q, Qian J, Wu D, Zheng P (2021) Effect of the Gad system on Actinobacillus succinogenes during acid stress. SMAB 2:177–185

    Google Scholar 

  • Chen X, Liu L, Bi Y, Meng F, Wang D, Qiu C, Yu J, Wang S (2023) A review of anammox metabolic response to environmental factors: characteristics and mechanisms. Environ Res Sec A 223:0013–9351

    Article  Google Scholar 

  • Dyk TV, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: A metabolic relief valve? J Bacteriol 186(21):7196–7204

    Article  PubMed  PubMed Central  Google Scholar 

  • Falero A, Serrano Y, Rodríguez S, Brito S, Marrero K (2020) Scanning electron microscopy as a useful tool for monitoring cell disruption of recombinant Escherichia coli SHuffle T7. Micros Microanal 26:145

    Article  CAS  Google Scholar 

  • Fitzgerald DJ, Stratford M, Gasson MJ, Ueckert J, Bos A, Narbad A (2004) Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97(1):104–113

    Article  PubMed  CAS  Google Scholar 

  • Giangrossi M, Zattoni S, Tramonti A, Biase DD, Falconi M (2005) Antagonistic role of H-NS and GadX in the regulation of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J Biol Chem 280:21498–21505

    Article  PubMed  CAS  Google Scholar 

  • Hadchity L, Kiwan P, Nassar F, Givaudan A, Khattar ZA (2021) AcrAB, the major RND-type efflux pump of Photorhabdus laumondii, confers intrinsic multidrug-resistance and contributes to virulence in insects. Environ Microbiol Rep 13(5):637–648

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MJ, Shaw JG, Kelly DJ (1993) Sequence analysis and interposon mutagenesis of a sensor-kinase (DctS) and response-regulator (DctR) controlling synthesis of the high-affinity C4-dicarboxylate transport system in Rhodobacter capsulatus. Mo Gen Genet 237:215–224

    Article  CAS  Google Scholar 

  • Hu G, Guo L, Gao C, Song W, Liu L, Chen X (2022) Synergistic metabolism of glucose and formate increases the yield of short-chain organic acids in Escherichia coli. ACS Synth Biol 11(1):135–143

    Article  PubMed  CAS  Google Scholar 

  • Jones HE, Holland IB, Jacq A, Wall T, Campbell AK (2003) Escherichia coli lacking the AcrAB multidrug efflux pump also lacks nonproteinaceous, PHB-polyphosphate Ca2+ channels in the membrane. BBA Biomembranes 1612:90–97

    Article  PubMed  CAS  Google Scholar 

  • Kambourakis S, Draths KM, Frost JM (2000) Synthesis of gallic acid and pyrogallol from glucose: replacing natural product isolation with microbial catalysis. J Am Chem Soc 122:9042–9043

    Article  CAS  Google Scholar 

  • Kurgan G, Panyon LA, Rodriguez-Sanchez Y, Pacheco E, Nieves LM, Mann R, Nielsen DR, Wang X (2019) Bioprospecting of native efflux pumps to enhance furfural tolerance in Ethanologenic Escherichia coli. Appl Environ Microbiol 85(6):e02985-e3018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lara A, Galindo J, Jaén K, Juárez M, Sigala C (2020) Physiological response of Escherichia coli W3110 and BL21 to the aerobic expression of vitreoscilla hemoglobin. J Microbiol Biotech 30(10):1592

    Article  CAS  Google Scholar 

  • Li Y, Zhu X, Zhang J, Lin Y, Si S (2020) Identification of a compound that inhibits the growth of Gram-negative bacteria by blocking BamA–BamD interaction. Front Microbiol 11:1252

    Article  PubMed  PubMed Central  Google Scholar 

  • Limpisophon K, Schleining G (2016) Use of gallic acid to enhance the antioxidant and mechanical properties of active fish gelatin film. J Food Sci 82:80–89

    Article  PubMed  Google Scholar 

  • Liu L, Duan X, Wu J (2016) L-tryptophan production in Escherichia coli improved by weakening the Pta-AckA pathway. PLoS ONE 11:e0158200

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Bilal M, Duan X, Iqbal HM (2019) Mitigation of environmental pollution by genetically engineered bacteria-current challenges and future perspectives. Sci Total Environ 667:444–454

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Lou J, Gu J, Lyu X, Wang F, Wei D (2020) Increasing l-homoserine production in Escherichia coli by engineering the central metabolic pathways. J Biotech 314:1–7

    Article  Google Scholar 

  • Luo H, Zheng P, Bilal M, Xie F, Wang Z (2020) Efficient bio-butanol production from lignocellulosic waste by elucidating the mechanisms of Clostridium acetobutylicum response to phenolic inhibitors. Sci Total Environ 710:136399

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Liu Z, Xie F, Bilal M, Peng F (2021) Lignocellulosic biomass to biobutanol: toxic effects and response mechanism of the combined stress of lignin-derived phenolic acids and phenolic aldehydes to Clostridium acetobutylicum. Ind Crop Prod 170:113722

    Article  CAS  Google Scholar 

  • Maiti S, Gallastegui G, Sarma SJ, Brar SK, Bihan YL, Drogui P, Buelna G, Verma M (2016) A re-look at the biochemical strategies to enhance butanol production. Biomass Bioenerg 94:187–200

    Article  CAS  Google Scholar 

  • Malki A, Le HT, Milles S, Kern R, Caldas T, Abdallah J, Richarme G (2008) Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J Biol Chem 283:13679-13687.14

    Article  PubMed  CAS  Google Scholar 

  • Mates AK, Sayed AK, Foster JW (2007) Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189(7):2759–2768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Misra R, Stikeleather R, Gabriele R (2015) In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli. J Mol Biol 427:1061–1074

    Article  PubMed  CAS  Google Scholar 

  • Nishino K, Senda Y, Yamaguchi A (2008) The AraC-family regulator GadX enhances multidrug resistance in Escherichia coli by activating expression of mdtEF multidrug efflux genes. J Infect Chemother 14:23–29

    Article  PubMed  CAS  Google Scholar 

  • Oliveira C, Stamford T, Neto N, Souza E (2010) Inhibition of Staphylococcus aureus in broth and meat broth using synergies of phenolics and organic acids. Int J Food Microbiol 137:312–316

    Article  PubMed  Google Scholar 

  • Pontrelli S, Chiu TY, Lan EI, Chen FY, Chang PC, James CL (2018) Escherichia coli as a host for metabolic engineering. Metab Eng 50:16–46

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Liu H, Yu J, Chen X, Liu L (2017) Med15B regulates acid stress response and tolerance in Candida glabrata. Appl Environ Microbiol 83:AEM.01128-AEM01117

    Article  Google Scholar 

  • Robertson JL (2018) The lipid bilayer membrane and its protein constituents. J Gen Physiol 150(11):1472–1483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg EY, Ma D, Nikaido H (2000) AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 182:1754–1756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samuel SA, Michael M, Victor GAV, Macarena C, Kevin-Carlo MRS, Carlos RS, Tomás A, Rafael AB, Aurora HM, Francisco M (2022) Membrane rigidity regulates E. coli proliferation rates. Sci Rep 12:933

    Article  Google Scholar 

  • Sato M, Machida K, Arikado E, Saito H, Kakegawa T, Kobayashi H (2000) Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl Environ Microbiol 66:3

    Article  Google Scholar 

  • Sayed AK, Foster JW (2009) A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. Mol Microbiol 71(6):1435–1450

    Article  PubMed  CAS  Google Scholar 

  • Singh VK, Nain V, Phanindra MLV, Gothandapani S, Chhapekar SS, Sreevathsa R, Rao K, Kumar PA (2022) Rifampicin increases expression of plant codon-optimized bacillus thuringiensis δ-endotoxin Genes in Escherichia coli. PROTEIN J. https://doi.org/10.1007/s10930-022-10043-y

    Article  PubMed  Google Scholar 

  • Siniagina M, Markelova M, Boulygina E, Laikov A, Dilyara K, Abdulkhakov SR, Grigoryeva TV (2021) P682 antibiotic resistome profiles of fecal Escherichia coli isolates in association with Crohn’s disease. J Crohns Colitis 2021:S601–S602

    Article  Google Scholar 

  • Tan J, Sastry AV, Fremming KS, Bjørn SP, Hoffmeyer A, Seo S, Voldborg BG, Palsson BO (2020) Independent component analysis of E. coli’s transcriptome reveals the cellular processes that respond to heterologous gene expression. Metab Eng 61:360–368

    Article  PubMed  CAS  Google Scholar 

  • Ting W, Huang C, Wu P, Huang S, Lin H, Li S, Chang J, Ng I (2021) Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzyme Microb Tech 148:109811

    Article  CAS  Google Scholar 

  • Tramonti A, De Canio M, De Biase D (2008) GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 70(4):965–982

    Article  PubMed  CAS  Google Scholar 

  • Walker C, Ryu S, Trinh CT (2019) Exceptional solvent tolerance in Yarrowia lipolytica is enhanced by sterols. Metab Eng 54:83–95

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Guleria S, Koffas MA, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104

    Article  PubMed  Google Scholar 

  • Wang J, Shen X, Rey J, Yuan Q, Yan Y (2017) Recent advances in microbial production of aromatic natural products and their derivatives. Appl Microbiol Biot 102:1–15

    CAS  Google Scholar 

  • Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664

    Article  PubMed  CAS  Google Scholar 

  • Yang DD, Alexander A, Kinnersley M, Cook E, Caudy AA, Rosebrock A, Rosenzweig F (2019) Fitness and productivity increase with ecotypic diversity among E. coli evolved in a simple, constant environment. Evol Biol. https://doi.org/10.1101/679969

    Article  Google Scholar 

  • Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, Pesesky MW, Foston M, Dantas G, Moon TS (2016) Comparative transcriptomics elucidates adaptive phenol tolerance andutilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res 44(5):2240–2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (2015) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    Article  Google Scholar 

  • Zhang DF (2010) Outer membrane proteins are involved in the regulation of isopropanol tolerance of gram negative bacteria. Chin J Biochem Mol Biol 26(12):1

    Google Scholar 

  • Zhang DF, Hui L, Lin XM, Wang SY, Peng XX (2011) Characterization of outer membrane proteins of Escherichia coli in response to phenol stress. Curr Microbiol 62:777–783

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21808075), the Natural Science Foundation of Jiangsu Province (BK20170459), and the Basic science in colleges and universities of Jiangsu Province (23KJB180001).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

LL conceived and designed the research. LL, ZZ, TL XW and ST conducted experiments. YZ and HL contributed new reagents or analytical tools. LL, SL and XD analyzed data. LL and MB wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Lina Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 1744 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tang, S., Liu, T. et al. Transcriptomic analysis approach towards an improved tolerance of Escherichia coli to gallic acid stress. Arch Microbiol 205, 372 (2023). https://doi.org/10.1007/s00203-023-03708-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03708-4

Keywords

Navigation