Skip to main content
Log in

Surfactant efficiency on pentachlorophenol-contaminated wastewater enhanced by Pseudomonas putida AJ 785569

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effect of three surfactants on the removal of PCP (800 mg L−1) from Secondary Treated Wastewater (STWW) by Pseudomonas putida AJ 785569. The effect of surfactants [sodium lauryl sulfate (SDS) as anionic, Tween 80 (TW80) as non-anionic and cetyltrimethylammonium bromide (CTAB) as cationic] is tested about the three following aspects: (1) bacterial growth, (2) bacterial biofilm formation or development and (3) PCP rate removal. The results showed that strain P. putida AJ 785569 could adsorb around 30 mg L−1 and remove 600 mg L−1 of PCP within 168 h of incubation. The SDS developed the growth of bacteria and the removal of PCP. This PCP removal in mineral salt medium (MSM) is around 760 mg L−1 (95% degradation) higher than the ones registered with CTAB and TW80 with a value 506.75 (63% degradation) and 364.1 mg L−1 (45% degradation), respectively. The obtained results of chloride concentration showed an important relation with PCP removal during incubation with an important value. Monitoring the development of bacterial biofilm, in MSM medium added with PCP (100 mg L−1) by strain P. putida AJ 785569, showed a significant increase in the optical density value from 0.9 to 4 at λ = 595 nm, a modification of strain P. putida AJ 785569’s morphotype, density and color colonies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arena U, Zaccariello L, Mastellone ML (2010) Fluidized bed gasification of wastederived fuels. Waste Manag 30(7):1212–1219

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25(10):1728–1731

  • Ashauer R, Hintermeister A, O’Connor I, Elumelu M, Hollender J, Escher BI (2012) Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex. Environ sci Technol 46(6):3498–3508

  • Baraldi E (2008) Strategy in industrial networks: experiences from IKEA. Calif Manag Rev 50(4):99–126. https://doi.org/10.2307/41166458

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in the soil. Soil Biol Biochem 17:837–842. https://doi.org/10.1016/0038-0717(85)90144-0

    Article  CAS  Google Scholar 

  • Bustamante N, Durán CM, Diez M (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil. J of Soil Sci Plant Nut 12(4):667–687

    Google Scholar 

  • Chaieb E, Bouyanzer A, Hammouti B, Benkaddour M (2005) Inhibition of the corrosion of steel in 1 M HCl by eugenol derivatives. Appl Surf Sci 246(1-3):199–206

  • Crosby DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl Chem 53:1051–1080

  • Del Castillo IP, Herna N, Lafuente A, Rodrı ID, Caviedes MA, Pajuelo E (2012) Self-bioremediation of cork processing wastewater by (chloro) phenol-degrading bacteria immobilized onto residual cork particles. Wat Res 46:1723–1734. https://doi.org/10.1016/j.watres.2011.12.038

    Article  CAS  Google Scholar 

  • Chamani J, Heshmati M (2008) Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches. J Coland Int Sci 322(1):119–127. https://doi.org/10.1016/j.jcis.2008.03.001

    Article  CAS  Google Scholar 

  • Chang HCY, Solomon NM, Wassarman DA, Karim FD, Therrien M, Rubin GM, Wolff T (1995) Phyllopode functions in the fate determination of a subset of photoreceptors in Drosophila. Cell 80(3):463–472. https://doi.org/10.1073/pnas.93.2.589

    Article  CAS  PubMed  Google Scholar 

  • Cheah P, Robbins B (eds) (1998) Cosmopolitics: thinking and feeling beyond the nation, vol 14. U of Minnesota Press, Minneapolis

    Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Inter 36(3):299–307

    Article  CAS  Google Scholar 

  • Cort JC (2020) Christian socialism: an informal history with an new introduction by Gary Dorrien. Orbis books

    Google Scholar 

  • Cort T, Bielefeldt A (2000) Effects of surfactants and temperature on PCP biodegradation. J Environ Eng 126:635. https://doi.org/10.1061/(ASCE)0733-9372

    Article  CAS  Google Scholar 

  • Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68(6):2950–2958. https://doi.org/10.1128/AEM.68.6.2950-2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahmida K, Fakhruddin ANM (2012) Recent advances in the development of a biosensor for phenol. Environ Sc and Biotech 11:261

    Article  Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater. Biores Technol 5:296–308. https://doi.org/10.1016/j.biortech.2007.10.025

    Article  CAS  Google Scholar 

  • Franzetti A, Di Gennaro P, Bestetti G, Lasagni M, Pitea D, Collina E (2008) Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. J Hazard Mat 152(3):1309–1316

    Article  CAS  Google Scholar 

  • Gao F, He T, Wang H, Yu S, Yi D, Liu W, Cai Z (2007) A promising strategy for the treatment of ischemic heart disease: mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Canad J of Cardiol 23(11):891–898

    Article  Google Scholar 

  • Garon M, Legare A, Guardo R, Savard P, Buschmann MD (2002) Streaming potentials maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load. J Biomechanics 35(2):207–216

    Article  CAS  Google Scholar 

  • Grandclement C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micro-pollutant removal: a review. Water Res 111:297–317. https://doi.org/10.1016/j.watres.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  • Hassen W, Neifar M, Cherif H, Najjari A, Chouchane H, Driouich RC, Cherif A (2018) Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front Microbiol 9:34

    Article  Google Scholar 

  • Kaczorek E, Olszanowski A (2011) Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: a cell surface modification. Wat Air Soil Pollut 214(1):451–459

  • Karn SK, Chakrabarty SK, Reddy MS (2010a) Pentachlorophenol degradation by Pseudomonas stutzeri CL7 in the secondary sludge of pulp and paper mill. J Environ Sci 22:1608–1612

    Article  CAS  Google Scholar 

  • Karn SK, Chakrabarty SK, Sudhakara RM (2010b) Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. Int Biodeterior. https://doi.org/10.1016/j.ibiod.2010.05.017

    Article  Google Scholar 

  • Kelly Mc Allister A, Hung L, Jack T (1996) Review paper microbial degradation of pentachlorophenol biodegradation. Trevors Pr Netherl 7:1–40. https://doi.org/10.1007/BF00056556

    Article  Google Scholar 

  • Kumar AN, Digambar G (2018) Bacterial biofilm degradation using extracellular enzymes produced by Penicillium janthinellum EU2D-21 under Submerged Fermentation. Adv Microbiol 8:687–698

    Article  Google Scholar 

  • Lanthier, M (1999) Étude de la biodégradation anaréobie du pentachlorophénol dans le sol par desulfitobacterium frapierie souche PCP-l (Doctoral dissertation, Université du Québec, Institut national de la recherche scientifique)

  • Lee SG, Yoon BD, Park YH, Oh HM (1998) Isolation of a novel pentachlorophenol degrading bacterium, Pseudomonas sp. Bu34. Appl Environ Microbiol 85:1–8

  • Li J, Tenenbaum P, Twicken JD, Burke CJ, Jenkins JM, Quintana EV et al (2019) Kepler data validation II–transit model fitting and multiple-planet search. Publ Astron Soc Pac 131(996):024506

    Article  Google Scholar 

  • Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261(5126):1286–1292

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2002) Influence of rhamnolipids and triton X-100 on the desorption of pesticides from soils. Environ Sci Technol 36(21):4669–4675

    Article  Google Scholar 

  • Mehri I, Turki Y, Chair M, Cherif H, Hassen A, Meyer JM, Gtari M (2011) Genetic and functional heterogeneity among fluorescent Pseudomonas isolated from environmental samples. J Gen Microbiol 57:101–111

    Article  CAS  Google Scholar 

  • Mehri I, Turki Y, Chérif H, Khessairi A, Hassen A, Gtari M (2014) Influence of biological treatment and ultraviolet disinfection system on Pseudomonas spp. diversity in wastewater as assessed by denaturing gradient gel electrophoresis. Clean Soil Air Wat 42(5):578–585

    Article  CAS  Google Scholar 

  • Meliani A, Bensoltane A (2014) Enhancement of hydrocarbons degradation by the use of Pseudomonas biosurfactants and biofilms. Petrol Environ Biotec 5(1):168

    Google Scholar 

  • Mokaberi P, Babayan-Mashhadi F, Amiri Tehrani Zadeh Z, Saberi MR, Chamani J (2020) Analysis of the interaction behavior between nano-curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1766570

    Article  PubMed  Google Scholar 

  • Mokaberi P, Babayan-Mashhadi F, Amiri Tehrani Zadeh Z, Saberi MR, Chamani J (2021) Analysis of the interaction behavior between nano-curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. J Biomolecul Struct Dyn 39(9):3358–3377

    CAS  Google Scholar 

  • Monfort O, Usman M, Hanna K (2020) Ferrate (VI) oxidation of pentachlorophenol in water and soil. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126550

    Article  PubMed  Google Scholar 

  • Mulligan CN, Eftekhari F (2003) Remediation with surfactant foam of PCP-contaminated soil. Eng Geol 70(3–4):269–279

    Article  Google Scholar 

  • Murialdo S, Fenoglio R, Haure P, Gonzalez J (2003) Degradation of phenol and chlorophenols by mixed and pure cultures. Water Sa 29(4):457–463. https://doi.org/10.4314/wsa.v29i4.5053

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (1991) Decision guidance documents: Pentachlorophenol and its salts and esters. United Nations Environment Programme, Food and Agriculture Organization of the United Nations, Rome-Geneva

  • Rakmi AR, Anuar N (2009) Pentachlorophenol removal via adsorption and biodegadation. J World Acad Sci Eng Technol 31:194–199

    Google Scholar 

  • Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J et al (2010a) Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1387–1397. https://doi.org/10.1007/s00253-009-2431-8

    Article  CAS  PubMed  Google Scholar 

  • Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J et al (2010b) Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86(5):1387–1397

    Article  CAS  Google Scholar 

  • Riviere JE, Qiao G, Baynes RE, Brooks JD, Mumtaz M (2001) Mixture component effects on the in vitro dermal absorption of pentachlorophenol. Arch Toxic 75(6):329–334

    Article  CAS  Google Scholar 

  • Salaudeen SA, Acharya B, Dutta A (2018) CaO-based CO2 sorbents: a review on screening, enhancement, cyclic stability, regeneration and kinetics modelling. J CO2 Util 23:179–199

    Article  CAS  Google Scholar 

  • Semple C, Steel M (2003) Phylogenetics. Oxford University Press on Demand

    Google Scholar 

  • Sharif-Barfeh Z, Beigoli S, Marouzi S, Rad AS, Asoodeh A, Chamani J (2019) Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary system’s. J Solut Chem 46(2):488–504. https://doi.org/10.1016/j.molliq.2018.02.031

    Article  CAS  Google Scholar 

  • Sharma A, Pandit J, Sharma R, Shirkot P (2016) Biodegradation of chlorpyrifos by Pseudomonas resinovarans strain AST2.2 isolated from enriched cultures. Curr World Environ 11(1):267–278. https://doi.org/10.12944/CWE.11.1.33

    Article  Google Scholar 

  • Suresh KR, Nagesh MA (2015) Experimental studies on effect of water and soil quality on crop yield. Aquat Proced 4:1235–1242. https://doi.org/10.1016/j.aqpro.2015.02.161

    Article  Google Scholar 

  • Touati A (2013) Économie politique de la densification des espaces à dominante pavillonnaire : l'avènement de stratégies post-suburbaines différenciée.Thèse de doctorat. Paris Est

  • Turki Y, Mehr I, Ouzari H, Khessairi A, Hassen A (2014a) Molecular typing, antibiotic resistance, virulence gene and biofilm formation of different Salmonella enterica serotypes. J Gen Appl Microbiol 60(4):123–130

    Article  CAS  Google Scholar 

  • Turki Y, Mehri I, Ouzari H, Khessairi A, Hassen A (2014b) Molecular typing, antibiotic resistance, virulence genes, and biofilm formation and developments of different Salmonella enterica serotypes. J Gen Appl Microbiol 60:123–130. https://doi.org/10.2323/jgam.60.123

    Article  CAS  PubMed  Google Scholar 

  • Wattanaphon HT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105(2):416–423

    Article  CAS  Google Scholar 

  • Werheni R, Mokni TS, Mehri I, Badi S, Hassen A (2016) Pentachlorophenol biodegradation by Citrobacter freundii isolated from forest contaminated soil. Wat Air Soil Pollut 227:1–12

    Article  Google Scholar 

  • Werheni RA, Mehri I, Badi S, Hassen W, Hassen A (2017) Pentachlorophenol degradation by Pseudomonas fluorescens. Wat Qual Res J 52(2):99–108

    Article  Google Scholar 

  • Werheni AR, Hassen W, Hidri Y, Simeone GR, Hassen A (2021) Macrophyte and indigenous bacterial co-remediation process for pentachlorophenol removal from wastewater. Internat J Phyt 227:1–12

    Google Scholar 

  • Whitely J (2001) An introduction to SSDS concepts and development. J Hopkins APL Tech Dig 22(4):516–522

    Google Scholar 

  • Wolski P, Savenije HH, Murray-Hudson M, Gumbricht T (2006) Modelling of the flooding in the Okavango Delta, Botswana, using a hybrid reservoir-GIS model. J of Hydrol 331(1–2):58–72

    Article  Google Scholar 

  • Yakamercan E, Aygun A (2020) Anaerobic/aerobic cycle effect on di (2-ethylhexyl) phthalate and pentachlorophenol removal from real textile wastewater in sequencing batch biofilm reactors. J Clean Prod 273:122975. https://doi.org/10.1016/j.jclepro.2020.122975

    Article  CAS  Google Scholar 

  • Yang RY, Chang LC, Hsu JC, Weng BB, Palada MC, Chadha ML, Levasseur V (2006) Nutritional and functional properties of Moringa leaves–From germplasm, to plant, to food, to health. In: Moringa leaves: Strategies, standards and markets for a better impact on nutrition in Africa. Moringanews, CDE, CTA, GFU, Paris, pp 1–9

Download references

Acknowledgements

This study was supported by the Centre of Research and Water Technologies (CERTE) (Techno Park of Borj-Cédria, Tunisia) as part of a project program contract 2019–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Werheni Ammeri.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

203_2021_2486_MOESM1_ESM.tif

Supplementary material 1: Examples of biofilm formation in BHI agar medium artificially contaminated by PCP (100 mg L-1) supplemented with CRA and 20 mg L-1 surfactants (SDS, CTAB, and TW80) at 30 °C during. SDS: sodium dodecyl sulfate; CTAB: Cetyltrimethylammonium bromide; TW80: Tween 80; PCP: Pentachlorophenol; BHI: Brain infusion broth (TIF 90 KB)

203_2021_2486_MOESM2_ESM.tif

Supplementary file 2: Principal component analysis of surfactant effect in bioaugmentation of PCP contaminated wastewater. SDS: sodium dodecyl sulfate; CTAB: Cetyltrimethylammonium bromide; TW80: Tween 80; PCP: Pentachlorophenol; Chlo: chloride; MSM: Mineral salt medium; BB: Bacterial biomass.(TIF 404 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammeri, R.W., Hidri, Y., Hassen, W. et al. Surfactant efficiency on pentachlorophenol-contaminated wastewater enhanced by Pseudomonas putida AJ 785569. Arch Microbiol 203, 5141–5152 (2021). https://doi.org/10.1007/s00203-021-02486-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02486-1

Keywords

Navigation